Experimental Spectroscopy for Fusion Applications

M. Goto

National Institute for Fusion Science, Japan

colors and plasma constituents

- plasmas show different colors with different working gas
- guessing constituents of the plasma is a kind of plasma spectroscopy
- however, color is unsuitable for quantitative analysis

spectral measurement

radiance and irradiance

sun radiance

- mean distance from earth

$$
L=1.496 \times 10^{11} \mathrm{~m}
$$

- mean diameter

$$
D=1.392 \times 10^{9} \mathrm{~m}
$$

solid angle of $1 \mathrm{~m}^{2}$ area on earth
$\varepsilon(\lambda)$

$\varepsilon^{\prime}(\lambda)$

SMARTS (Simple Model of the Atmospheric Radiative Transfer of Sunshine) http://www.nrel.gov/rredc/smarts/

Figure 2: Arrangement for the direct observation of the solar radiation.

$$
W^{\prime}(\lambda)=\frac{\Gamma(\lambda)}{a}=\frac{s}{x^{2}} W(\lambda) \quad\left[W \mathrm{~m}^{-2} \mathrm{~nm}^{-1}\right]
$$

integrating sphere

Figure 1: Optical arrangement for sensitivity calibration.

reference: www.astm.org/g0173-03r20.html

- heliotron-type device, i.e., no inductive plasma current
- advantageous for steady-state operation (no disruption)

achievements

T_{e}	20 keV
T_{i}	10 keV
n_{e}	$10^{21} \mathrm{~m}^{-3}$

- spectroscopic diagnosis can be classified into two categories
- high wavelength resolution measurement
- shift, broadening, splitting, etc.
- wide wavelength range measurement
- intensity distribution of various emission lines, line intensity ratio, continuum

line intensity distribution

- various emission lines are simultaneously measured
- population distribution over excited levels gives information on the plasma state
- collisional-radiative model is used for the analysis

main discharge with helium gas

corona equilibrium

$$
\begin{aligned}
& C(1,3) n_{\mathrm{e}} n(1)= \\
& \quad[A(3,1)+A(3,2)] n(3)
\end{aligned}
$$

more generally

$$
\begin{aligned}
C(1, p) n_{\mathrm{e}} n(1) & =\sum_{q<p} A(p, q) n(p) \\
n(p) & =\frac{C(1, p) n_{\mathrm{e}}}{\sum_{q<p} A(p, q)} n(1)
\end{aligned}
$$

corona model cannot explain observation results

Phase I

$$
n(p)=r_{1}(p) n_{\mathrm{e}} n(1)
$$

other higher levels and ionization

Phase III

Phase II

- recombining plasma of Hell appears earlier than Hel
- derived T_{e} is higher
- spectroscopy is a fundamental diagnostic method for fusion plasmas
- collisional-radiative model is essential for analyzing measured line intensities

T_{e} and n_{e} analysis with helium lines

- measurement has been made with single collimated line-of-sight
- dominant line emission is known to be localized at edge region

we first focus on the ratios
of three emission lines
which are known to have
large dependence on T_{e} or n_{e}

$$
f\left(T_{\mathrm{e}}, n_{\mathrm{e}}\right)=\sum_{p}\left(\frac{n_{\text {cal }}(p)-n_{\text {mes }}(p)}{n_{\text {mes }}(p)}\right)^{2} \quad \text { with } \quad p \in\left\{3^{1} \mathrm{~S}, 3^{1} \mathrm{D}, 3^{3} \mathrm{~S}\right\}
$$

- least-squares fitting is attempted with an error function which describes the difference between the model and measurement results

- $\quad T_{e}$ and n_{e} derived seem to be reasonable and fitting looks to be going well

obtained results are
examined with using
other lines

reabsorption effectively works to reduce the transition probability of spontaneous radiative transition and to increase the upper level populations

$$
f\left(T_{\mathrm{e}}, n_{\mathrm{e}}, \Lambda\left(2^{1} \mathrm{P}\right), \Lambda\left(3^{1} \mathrm{P}\right), \ldots\right)=\Sigma_{p}\left(\frac{n(p)-n_{\operatorname{mes}}(p)}{n_{\operatorname{mes}}(p)}\right)^{2}
$$

- accurate evaluation of escape factors is difficult
- one idea is to include the escape factors in the fitting parameters, but restrictions should be given for the escape factors
- escape factors can be theoretically evaluated for some simplified geometries such as slab or cylindrical structures

slab with 1 cm thickness
- restriction is added as a regularization term to the error function
$f\left(T_{\mathrm{e}}, n_{\mathrm{e}}, \Lambda\left(2^{1} \mathrm{P}\right), \Lambda\left(3^{1} \mathrm{P}\right), \ldots\right)=\frac{1}{N_{p}} \sum_{p}\left(\frac{n(p)-n_{\text {mes }}(p)}{n_{\text {mes }}(p)}\right)^{2}+\mu \frac{1}{N_{q}} \sum_{q}\left(\frac{\Lambda(q)-\Lambda^{\text {slab }}(q)}{\Lambda^{\text {slab }}(q)}\right)$
with $p \in\{$ all upper levels $\}, q \in\left\{n^{1} \mathrm{P}\right\}$, and hyperparameter μ

- optimizations for the hyper parameter μ and for the number of escape factors considered in the error function are attempted through biasvariance analyses

$$
\begin{gathered}
\quad\left(\operatorname{bias}^{2}\right)=\frac{1}{N} \sum_{p}\left(\frac{\bar{n}_{\text {meas }}(p)-\bar{n}_{\mathrm{ft}}(p)}{\bar{n}_{\text {meas }}(p)}\right)^{2} \\
\text { variance }=\frac{1}{N} \sum_{p}\left\{\frac{1}{K} \sum_{k=1}^{K}\left(\frac{\bar{n}_{\mathrm{fit}}(p)-n_{\mathrm{fit}}^{k}(p)}{\bar{n}_{\mathrm{fit}}}\right)^{2}\right\}
\end{gathered}
$$

K: number of spectra taken for the same plasma condition

polarization spectroscopy

- anisotropy in EVDF could play a critical role for the plasma confinement
- polarization spectroscopy is a promising technique for that purpose
- polarization measurement is attempted for Lyman-a line in LHD
- anisotropy in EVDF is evaluated with a help of atomic model

$$
P=\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}
$$

- quantitative analysis of polarization requires a simulation model
- a sophisticated formulation has been developed by Fujimoto (Plasma Polarization Spectroscopy, 2008 Springer)

longitudinal alignment $\quad A_{\mathrm{L}}<0 \quad A_{\mathrm{L}}>0$
- under axisymmetric condition, density matrix in spherical tensor representation is written by two terms $\quad \rho(p)=\rho_{0}^{0}(p) T_{0}^{(0)}(p)+\rho_{0}^{2}(p) T_{0}^{(2)}(p)$
population alignment
$a(p) / n(p)$ is related to P or A_{L}

$$
\begin{aligned}
& \begin{array}{lll}
\rho_{0}^{0}(p) & \rho_{0}^{2}(p) \\
n(p)
\end{array} \quad a(p) \quad \xrightarrow{C 2,2(p, p)} \\
& C^{0,0}(1, p) \downarrow \left\lvert\, \begin{array}{l}
(p, 1) \\
\mid \\
C^{0,2}(1, p)
\end{array}\right. \\
& n(1)
\end{aligned}
$$

$$
Q_{0}^{0,2}(r, p)=(-1)^{J_{p}+J_{s}} \sqrt{\frac{2}{3}}\left(2 J_{p}+1\right)^{-1}\left\{\begin{array}{ccc}
J_{p} & J_{p} & 2 \\
1 & 1 & J_{s}
\end{array}\right\}^{-1} A_{\mathrm{L}}(p, s) Q_{0}^{0,0}(r, p)
$$

$$
f(v, \theta)=2 \pi\left(\frac{m}{2 \pi k}\right)^{3 / 2}\left(\frac{1}{T_{\perp}^{2} T_{\|}}\right)^{1 / 2} \exp \left[-\frac{m v^{2}}{2 k}\left(\frac{\sin ^{2} \theta}{T_{\perp}}+\frac{\cos ^{2} \theta}{T_{\|}}\right)\right]
$$

$$
v_{\|}=v \cos \theta, v_{\perp}=v \sin \theta
$$

$$
\begin{gathered}
C^{0,0}(r, p)=\int Q_{0}^{0,0}(r, p) 4 \pi f_{0}(v) v^{3} \mathrm{~d} v \\
C^{0,2}(r, p)=\int Q_{0}^{0,2}(r, p)\left[4 \pi f_{2}(v) / 5\right] v^{3} \mathrm{~d} v \\
f(v, \theta)=\sum_{K} f_{K}(v) P_{K}(\cos \theta) \\
f_{K}(v)=\frac{2 K+1}{2} \int f(v, \theta) P_{K}(\cos \theta) \sin \theta \mathrm{d} \theta
\end{gathered}
$$

- polarization in Lyman-a is detected for plasma of magnetically confined fusion experiment
- anisotropy in EVDF is evaluated in terms of $T_{\|} / T_{\perp}$ with the population-alignment collisional-radiative model
- $T_{1}<T_{\perp}$ is always true, that is understandable when particle motion characteristics in the edge plasma are taken into consideration
- anisotropy shows a clear dependence on T_{e} rather than n_{e}

ICSLS 2024

26th International Conference on Spectral Line Shapes
2-7 Jun. 2024
Prefectural Budokan, Otsu, JAPAN

ICSLS 2024

Home] [Important Dates] [Program] [Proceedings] [Registration] [Venue] [Committees] [Contact]

