Vibrational spectroscopy

Vibrational spectroscopy

THE ASTROPHYSICAL JOURNAL

AN INTERNATIONAL REVIEW OF SPECTROSCOPY AND ASTRONOMICAL PHYSICS

VOLUME 126
SEPTEMBER 1957
NUMBER 2

SPECTROSCOPIC EVIDENCE FOR VEGETATION ON MARS
William M. Sinton
Smithsonian Astrophysical Observatory
Received May 6, 1957

Vibrational spectroscopy

Vibrational spectroscopy

Vibrational spectroscopy

Fig. 3.-Observations of the spectrum of Mars obtained on four nights and after division by the solar spectrum (solid curve of Fig. 2).

Vibrational spectroscopy

Telluric HDO!

Vibrational motion

- First consider the the vibration of a non-rotating molecule:

$$
\frac{1}{R^{2}} \frac{\mathrm{~d}}{\mathrm{~d} R}\left(R^{2} \frac{\mathrm{~d} S}{\mathrm{~d} R}\right)+\frac{2 \mu}{\hbar^{2}}\left(E-V_{n}(R)-\frac{J(J+1) \hbar^{2}}{2 \mu R^{2}}\right) S=0
$$

becomes:

$$
\frac{1}{R^{2}} \frac{\mathrm{~d}}{\mathrm{~d} R}\left(R^{2} \frac{\mathrm{~d} S}{\mathrm{~d} R}\right)+\frac{2 \mu}{\hbar^{2}}\left(E-V_{n}(R)\right) S=0
$$

Vibrational motion

- First consider the the vibration of a non-rotating molecule:

$$
\frac{1}{R^{2}} \frac{\mathrm{~d}}{\mathrm{~d} R}\left(R^{2} \frac{\mathrm{~d} S}{\mathrm{~d} R}\right)+\frac{2 \mu}{\hbar^{2}}\left(E-V_{n}(R)-\frac{J(J+1) \hbar^{2}}{2 \mu R^{2}}\right) S=0
$$

becomes:

$$
\frac{1}{R^{2}} \frac{\mathrm{~d}}{\mathrm{~d} R}\left(R^{2} \frac{\mathrm{~d} S}{\mathrm{~d} R}\right)+\frac{2 \mu}{\hbar^{2}}\left(E-V_{n}(R)\right) S=0
$$

- $V_{n}(R)$ is in general a complex function that depends on the electronic wavefunction, but for small displacements from R_{e} :

$$
V_{n}(R)=V_{n}\left(R_{e}\right)+\left.\frac{\mathrm{d} V_{n}}{\mathrm{~d} R}\right|_{R_{e}}\left(R-R_{e}\right)+\left.\frac{1}{2} \frac{\mathrm{~d}^{2} V_{n}}{\mathrm{~d} R^{2}}\right|_{R_{e}}\left(R-R_{e}\right)^{2}+\cdots
$$

Vibrational motion

$$
V_{n}(R)=V_{n}\left(R_{e}\right)+\left.\frac{\mathrm{d} V_{n}}{\mathrm{~d} R}\right|_{R_{e}}\left(R-R_{e}\right)+\left.\frac{1}{2} \frac{\mathrm{~d}^{2} V_{n}}{\mathrm{~d} R^{2}}\right|_{R_{e}}\left(R-R_{e}\right)^{2}+\cdots
$$

- We can choose the first term to be zero

Vibrational motion

$$
V_{n}(R)=V_{n}\left(R_{e}\right)+\left.\frac{\mathrm{d} V_{n}}{\mathrm{~d} R}\right|_{R_{e}}\left(R-R_{e}\right)+\left.\frac{1}{2} \frac{\mathrm{~d}^{2} V_{n}}{\mathrm{~d} R^{2}}\right|_{R_{e}}\left(R-R_{e}\right)^{2}+\cdots
$$

- We can choose the first term to be zero
- The second term is zero

Vibrational motion

$$
V_{n}(R)=V_{n}\left(R_{e}\right)+\left.\frac{\mathrm{d} V_{n}}{\mathrm{~d} R}\right|_{R_{e}}\left(R-R_{e}\right)+\left.\frac{1}{2} \frac{\mathrm{~d}^{2} V_{n}}{\mathrm{~d} R^{2}}\right|_{R_{e}}\left(R-R_{e}\right)^{2}+\cdots
$$

- We can choose the first term to be zero
- The second term is zero
- We can define the "bond force constant":

$$
k=\left.\frac{\mathrm{d}^{2} V_{n}}{\mathrm{~d} \boldsymbol{R}^{2}}\right|_{R_{e}}
$$

Vibrational motion

$$
V_{n}(R)=V_{n}\left(R_{e}\right)+\left.\frac{\mathrm{d} V_{n}}{\mathrm{~d} R}\right|_{R_{e}}\left(R-R_{e}\right)+\left.\frac{1}{2} \frac{\mathrm{~d}^{2} V_{n}}{\mathrm{~d} R^{2}}\right|_{R_{e}}\left(R-R_{e}\right)^{2}+\cdots
$$

- We can choose the first term to be zero
- The second term is zero
- We can define the "bond force constant":

$$
k=\left.\frac{\mathrm{d}^{2} V_{n}}{\mathrm{~d} \boldsymbol{R}^{2}}\right|_{R_{e}}
$$

- So:

$$
V_{n}(R) \approx \frac{1}{2} k(R-R e)^{2}
$$

(the parabolic potential used earlier)

Vibrational motion

- Within this approximation:

$$
\frac{1}{R^{2}} \frac{\mathrm{~d}}{\mathrm{~d} R}\left(R^{2} \frac{\mathrm{~d} S}{\mathrm{~d} R}\right)+\frac{2 \mu}{\hbar^{2}}\left(E-\frac{1}{2} k\left(R-R_{e}\right)^{2}\right) S=0
$$

Vibrational motion

- Within this approximation:

$$
\frac{1}{R^{2}} \frac{\mathrm{~d}}{\mathrm{~d} R}\left(R^{2} \frac{\mathrm{~d} S}{\mathrm{~d} R}\right)+\frac{2 \mu}{\hbar^{2}}\left(E-\frac{1}{2} k\left(R-R_{e}\right)^{2}\right) S=0
$$

- Make the substitution:

$$
S(R)=\frac{\psi(x)}{x+R_{e}}, \quad \text { where } x=R-R_{e}
$$

is the displacement of the nuclei from equilibrium to get:

$$
-\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} x^{2}}+\frac{1}{2} k x^{2}=E \psi
$$

Vibrational motion

- Within this approximation:

$$
\frac{1}{R^{2}} \frac{\mathrm{~d}}{\mathrm{~d} R}\left(R^{2} \frac{\mathrm{~d} S}{\mathrm{~d} R}\right)+\frac{2 \mu}{\hbar^{2}}\left(E-\frac{1}{2} k\left(R-R_{e}\right)^{2}\right) S=0
$$

- Make the substitution:

$$
S(R)=\frac{\psi(x)}{x+R_{e}}, \quad \text { where } x=R-R_{e}
$$

is the displacement of the nuclei from equilibrium to get:

$$
-\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} x^{2}}+\frac{1}{2} k x^{2}=E \psi
$$

- Harmonic motion with frequency $\omega=\sqrt{k / \mu}$

Vibrational motion

- Further transformation to "natural units":

$$
-\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} x^{2}}+\frac{1}{2} k x^{2} \psi=E \psi
$$

Vibrational motion

- Further transformation to "natural units":

$$
-\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} x^{2}}+\frac{1}{2} k x^{2} \psi=E \psi
$$

$$
\begin{aligned}
q=\alpha x & \Rightarrow x=q / x \\
& \Rightarrow-\frac{\hbar^{2}}{2 \mu} \alpha^{2} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} q^{2}}+\frac{1}{2} k\left(\frac{q}{\alpha}\right)^{2} \psi=E \psi \\
& \Rightarrow-\frac{1 \mathrm{~d}^{2} \psi}{2} \frac{1}{\mathrm{~d} q^{2}}+\frac{1}{2} q^{2} \frac{k \mu}{\hbar^{2} \alpha^{\alpha}} \psi=E \frac{\mu}{\hbar^{2} \alpha^{2}} \psi
\end{aligned}
$$

Vibrational motion

- Further transformation to "natural units":

$$
-\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} x^{2}}+\frac{1}{2} k x^{2} \psi=E \psi
$$

$$
\begin{aligned}
q=\alpha x & \Rightarrow x=q / x \\
& \Rightarrow-\frac{\hbar^{2}}{2 \mu} \alpha^{2} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} q^{2}}+\frac{1}{2} k\left(\frac{q}{\alpha}\right)^{2} \psi=E \psi \\
& \Rightarrow-\frac{1 \mathrm{~d}^{2} \psi}{2} \frac{1}{\mathrm{~d} q^{2}}+\frac{1}{2} q^{2} \frac{k \mu}{\hbar^{2} \alpha^{4}} \psi=E \frac{\mu}{\hbar^{2} \alpha^{2}} \psi
\end{aligned}
$$

- Choose
$\frac{k \mu}{\hbar^{2} \alpha^{4}}=1 \Rightarrow \alpha=\left(\frac{k \mu}{\hbar^{2}}\right)^{1 / 4} \Rightarrow-\frac{1}{2} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} q^{2}}+\frac{1}{2} q^{2} \psi=E \frac{\mu}{\hbar^{2}} \frac{\hbar}{\sqrt{k \mu}} \psi=\frac{E}{\hbar} \sqrt{\frac{\mu}{k}} \psi=\frac{E}{\hbar \omega} \psi$

$$
-\frac{1}{2} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} q^{2}}+\frac{1}{2} q^{2} \psi=\frac{E}{\hbar \omega} \psi
$$

Vibrational motion

- Further transformation to "natural units": $q=\left(\mu k / \hbar^{2}\right)^{1 / 4} x$

$$
-\frac{1}{2} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} q^{2}}+\frac{1}{2} q^{2}=\frac{E}{\hbar \omega} \psi
$$

- The energy levels are quantized in terms of a quantum number, $v=0,1,2, \ldots$

$$
E_{v}=\hbar \omega\left(v+\frac{1}{2}\right)
$$

Vibrational motion

- Further transformation to "natural units": $q=\left(\mu k / \hbar^{2}\right)^{1 / 4} x$

$$
-\frac{1}{2} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} q^{2}}+\frac{1}{2} q^{2}=\frac{E}{\hbar \omega} \psi
$$

- The energy levels are quantized in terms of a quantum number, $v=0,1,2, \ldots$

$$
E_{v}=\hbar \omega\left(v+\frac{1}{2}\right)
$$

- The wavefunctions have the form:

$$
\psi(q)=N_{v} H_{\nu}(q) \exp \left(-q^{2} / 2\right),
$$

where N_{v} is a normalization constant and $H_{v}(q)$ is a Hermite polynomial.

The Hermite polynomials

- Starting with:

$$
-\frac{1}{2} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} q^{2}}+\frac{1}{2} q^{2}=\frac{E}{\hbar \omega} \psi
$$

define $C=2 E / \hbar \omega$ and rearrange:

$$
\frac{\mathrm{d}^{2} \psi}{\mathrm{~d} q^{2}}+\left(C-q^{2}\right) \psi=0
$$

The Hermite polynomials

- Starting with:

$$
-\frac{1}{2} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} q^{2}}+\frac{1}{2} q^{2}=\frac{E}{\hbar \omega} \psi
$$

define $C=2 E / \hbar \omega$ and rearrange:

$$
\frac{\mathrm{d}^{2} \psi}{\mathrm{~d} q^{2}}+\left(C-q^{2}\right) \psi=0
$$

- For $C=1$ (i.e. $E_{0}=\frac{1}{2} \hbar \omega$) the solution is $\psi_{0}(q)=N_{0} e^{-q^{2} / 2}$

The Hermite polynomials

- Starting with:

$$
-\frac{1}{2} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} q^{2}}+\frac{1}{2} q^{2}=\frac{E}{\hbar \omega} \psi
$$

define $C=2 E / \hbar \omega$ and rearrange:

$$
\frac{\mathrm{d}^{2} \psi}{\mathrm{~d} q^{2}}+\left(C-q^{2}\right) \psi=0
$$

- For $C=1$ (i.e. $E_{0}=\frac{1}{2} \hbar \omega$) the solution is $\psi_{0}(q)=N_{0} e^{-q^{2} / 2}$
- This is the ground state (and E is non-zero)

The Hermite polynomials

- Starting with:

$$
-\frac{1}{2} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} q^{2}}+\frac{1}{2} q^{2}=\frac{E}{\hbar \omega} \psi
$$

define $C=2 E / \hbar \omega$ and rearrange:

$$
\frac{\mathrm{d}^{2} \psi}{\mathrm{~d} q^{2}}+\left(C-q^{2}\right) \psi=0
$$

- For $C=1$ (i.e. $E_{0}=\frac{1}{2} \hbar \omega$) the solution is $\psi_{0}(q)=N_{0} e^{-q^{2} / 2}$
- This is the ground state (and E is non-zero)
- The more general ansatz is $\psi_{v}(q)=H_{v}(q) e^{-q^{2} / 2}$ where $H_{v}(q)$ is some finite polynomial which must satisfy

$$
\frac{\mathrm{d}^{2} \boldsymbol{H}_{v}}{\mathrm{~d} q^{2}}-2 q \frac{\mathrm{~d} \boldsymbol{H}_{v}}{\mathrm{~d} q}+(\boldsymbol{C}-1) \boldsymbol{H}=0 .
$$

The Hermite polynomials

$$
\frac{\mathrm{d}^{2} \boldsymbol{H}_{v}}{\mathrm{~d} q^{2}}-2 q \frac{\mathrm{~d} \boldsymbol{H}_{v}}{\mathrm{~d} q}+(\boldsymbol{C}-1) \boldsymbol{H}=0 .
$$

- This equation is well known and its solutions are the Hermite polynomials, defined by

$$
H_{v}(q)=(-1)^{v} e^{q^{2}} \frac{\mathrm{~d}^{v}}{\mathrm{~d} q^{v}}\left(e^{-q^{2}}\right)
$$

where $v=0,1,2, \ldots$

The Hermite polynomials

$$
\frac{\mathrm{d}^{2} \boldsymbol{H}_{v}}{\mathrm{~d} q^{2}}-2 q \frac{\mathrm{~d} \boldsymbol{H}_{v}}{\mathrm{~d} q}+(\boldsymbol{C}-1) \boldsymbol{H}=0 .
$$

- This equation is well known and its solutions are the Hermite polynomials, defined by

$$
H_{v}(q)=(-1)^{v} e^{q^{2}} \frac{\mathrm{~d}^{v}}{\mathrm{~d} q^{v}}\left(e^{-q^{2}}\right)
$$

where $v=0,1,2, \ldots$

- $H_{v}(q)$ are orthogonal with respect to the weight function $e^{-q^{2}}$

$$
\int_{-\infty}^{\infty} H_{m}(q) H_{n}(q) e^{-q^{2}} \mathrm{~d} q=\sqrt{\pi} 2^{q} q!\delta_{n m},
$$

The Hermite polynomials

$$
\frac{\mathrm{d}^{2} \boldsymbol{H}_{v}}{\mathrm{~d} q^{2}}-2 q \frac{\mathrm{~d} \boldsymbol{H}_{v}}{\mathrm{~d} q}+(\boldsymbol{C}-1) \boldsymbol{H}=0 .
$$

- This equation is well known and its solutions are the Hermite polynomials, defined by

$$
H_{v}(q)=(-1)^{v} e^{q^{2}} \frac{\mathrm{~d}^{v}}{\mathrm{~d} q^{v}}\left(e^{-q^{2}}\right)
$$

where $v=0,1,2, \ldots$

- $H_{v}(q)$ are orthogonal with respect to the weight function $e^{-q^{2}}$

$$
\int_{-\infty}^{\infty} H_{m}(q) H_{n}(q) e^{-q^{2}} \mathrm{~d} q=\sqrt{\pi} 2^{q} q!\delta_{n m},
$$

- And obey the recursion relation:

$$
H_{n+1}(q)=2 q H_{n}(q)-2 n H_{n-1}(q) .
$$

The Hermite polynomials

Harmonic oscillator wavefunctions

Harmonic oscillator probabilities

$|\psi(q)|^{2}$

Harmonic oscillator probabilities

Harmonic oscillator probabilities

Harmonic vibrational transitions

- The transition probability from one vibrational state, v " to another v^{\prime} is the square of the transition dipole moment:

$$
M_{v^{\prime} v^{\prime \prime}}=\int_{-\infty}^{\infty} \psi_{v^{\prime}}^{*} \hat{\mu}(q) \psi_{v^{\prime \prime}} \mathrm{d} q .
$$

Harmonic vibrational transitions

- The transition probability from one vibrational state, v " to another v^{\prime} is the square of the transition dipole moment:

$$
M_{v^{\prime} v^{\prime \prime}}=\int_{-\infty}^{\infty} \psi_{v^{*}}^{*} \hat{\mu}(q) \psi_{v^{\prime \prime}} \mathrm{d} q .
$$

- The dipole moment operator is a complex function of q but may be expanded in a Taylor series:

$$
\hat{\mu}=\mu_{0}+\left.\frac{\mathrm{d} \mu}{\mathrm{~d} q}\right|_{0} q+\cdots
$$

Harmonic vibrational transitions

- The transition probability from one vibrational state, v " to another v^{\prime} is the square of the transition dipole moment:

$$
M_{v^{\prime} v^{\prime \prime}}=\int_{-\infty}^{\infty} \psi_{v^{*}}^{*} \hat{\mu}(q) \psi_{v^{\prime \prime}} \mathrm{d} q .
$$

- The dipole moment operator is a complex function of q but may be expanded in a Taylor series:

$$
\hat{\mu}=\mu_{0}+\left.\frac{\mathrm{d} \mu}{\mathrm{~d} q}\right|_{0} q+\cdots
$$

- Therefore,

$$
M_{v^{\prime} v^{\prime \prime}}=\mu_{0} \int_{-\infty}^{\infty} \psi_{v^{\prime}}^{*} \psi_{v^{\prime \prime}} \mathrm{d} q+\left.\frac{\mathrm{d} \mu}{\mathrm{~d} q}\right|_{0} \int_{-\infty}^{\infty} \psi_{v^{\prime}}^{*} \cdot q \cdot \psi_{v^{\prime \prime}} \mathrm{d} q
$$

Harmonic vibrational transitions

- The transition probability from one vibrational state, v " to another v^{\prime} is the square of the transition dipole moment:

$$
M_{v^{\prime} v^{\prime \prime}}=\int_{-\infty}^{\infty} \psi_{v^{*}}^{*} \hat{\mu}(q) \psi_{v^{\prime \prime}} \mathrm{d} q .
$$

- The dipole moment operator is a complex function of q but may be expanded in a Taylor series:

$$
\hat{\mu}=\mu_{0}+\left.\frac{\mathrm{d} \mu}{\mathrm{~d} q}\right|_{0} q+\cdots
$$

- Therefore,

$$
\begin{aligned}
& M_{v^{\prime} v^{\prime \prime}}=\mu_{0} \int_{-\infty}^{\infty} \psi_{v^{\prime}} \psi_{v^{\prime \prime}} \mathrm{d} q+\left.\frac{\mathrm{d} \mu}{\mathrm{~d} q}\right|_{0} \int_{-\infty}^{\infty} \psi_{v^{\prime}}^{*} \cdot q \cdot \psi_{v^{\prime \prime}} \mathrm{d} q \\
& M_{v^{\prime} v^{\prime \prime}}=\left.\frac{\mathrm{d} \mu}{\mathrm{~d} q}\right|_{0} N_{v^{\prime \prime}} N_{v^{\prime}} \int_{-\infty}^{\infty} e^{-q^{2}} H_{v^{\prime \prime}}(q) q H_{v^{\prime}} \mathrm{d} q .
\end{aligned}
$$

Harmonic vibrational transitions

$$
M_{v^{\prime} v^{\prime \prime}}=\left.\frac{\mathrm{d} \mu}{\mathrm{~d} q}\right|_{0} N_{v^{\prime \prime}} N_{v^{\prime}} \int_{-\infty}^{\infty} e^{-q^{2}} H_{v^{\prime \prime}}(q) q H_{v^{\prime}} \mathrm{d} q .
$$

Harmonic vibrational transitions

$$
M_{v^{\prime} v^{\prime \prime}}=\left.\frac{\mathrm{d} \mu}{\mathrm{~d} q}\right|_{0} N_{v^{\prime \prime}} N_{v^{\prime}} \int_{-\infty}^{\infty} e^{-q^{2}} H_{v^{\prime \prime}}(q) q H_{v^{\prime}} \mathrm{d} q .
$$

- From the recursion relation $\quad H_{n+1}(q)=2 q H_{n}(q)-2 n H_{n-1}(q)$.

$$
M_{v^{\prime} v^{\prime \prime}}=\left.\frac{\mathrm{d} \mu}{\mathrm{~d} q}\right|_{0} N_{v^{\prime \prime}} N_{v^{\prime}} \int_{-\infty}^{\infty} e^{-q^{2}}\left[\frac{1}{2} H_{v^{\prime \prime}+1}(q)+v^{\prime \prime} H_{v^{\prime \prime}-1}(q)\right] H_{v^{\prime \prime}}(q) \mathrm{d} q,
$$

Harmonic vibrational transitions

$$
M_{v^{\prime} v^{\prime \prime}}=\left.\frac{\mathrm{d} \mu}{\mathrm{~d} q}\right|_{0} N_{v^{\prime \prime}} N_{v^{\prime}} \int_{-\infty}^{\infty} e^{-q^{2}} H_{v^{\prime \prime}}(q) q H_{v^{\prime}} \mathrm{d} q .
$$

- From the recursion relation $\quad H_{n+1}(q)=2 q H_{n}(q)-2 n H_{n-1}(q)$.

$$
M_{v^{\prime} v^{\prime \prime}}=\left.\frac{\mathrm{d} \mu}{\mathrm{~d} q}\right|_{0} N_{v^{\prime \prime}} N_{v^{\prime}} \int_{-\infty}^{\infty} e^{-q^{2}}\left[\frac{1}{2} \boldsymbol{H}_{v^{\prime \prime}+1}(q)+v^{\prime \prime} H_{v^{\prime \prime}-1}(q)\right] \boldsymbol{H}_{v^{\prime \prime}}(q) \mathrm{d} q,
$$

- The "selection rules" are:

$$
\left.\frac{\mathrm{d} \mu}{\mathrm{~d} q}\right|_{0} \neq 0 \quad \text { and } \Delta v=v^{\prime}-v^{\prime \prime}= \pm 1
$$

Harmonic vibrational transitions

$$
M_{v^{\prime} v^{\prime \prime}}=\left.\frac{\mathrm{d} \mu}{\mathrm{~d} q}\right|_{0} N_{v^{\prime \prime}} N_{v^{\prime}} \int_{-\infty}^{\infty} e^{-q^{2}} H_{v^{\prime \prime}}(q) q H_{v^{\prime}} \mathrm{d} q .
$$

- From the recursion relation $\quad H_{n+1}(q)=2 q H_{n}(q)-2 n H_{n-1}(q)$.

$$
M_{v^{\prime} v^{\prime \prime}}=\left.\frac{\mathrm{d} \mu}{\mathrm{~d} q}\right|_{0} N_{v^{\prime \prime}} N_{v^{\prime}} \int_{-\infty}^{\infty} e^{-q^{2}}\left[\frac{1}{2} H_{v^{\prime \prime}+1}(q)+v^{\prime \prime} H_{v^{\prime \prime}-1}(q)\right] H_{v^{\prime \prime}}(q) \mathrm{d} q,
$$

- The "selection rules" are:

$$
\left.\frac{\mathrm{d} \mu}{\mathrm{~d} q}\right|_{0} \neq 0 \text { and } \Delta v=v^{\prime}-v^{\prime \prime}= \pm 1
$$

"gross" selection rule

- Homonuclear diatomic molecules (e.g. H_{2}) do not have an electric-dipole allowed vibrational spectrum

Rovibrational transitions

- Further selection rule on $J: \Delta J= \pm 1$
- $\mathrm{P}(\Delta J=-1)$ and $\mathrm{R}(\Delta J=+1)$ branches:
- e.g. CO fundamental band: $v=1 \leftarrow 0$

Rovibrational transitions

Anharmonic vibrations

- The harmonic potential deviates from the real interatomic potential at higher energies ...
- ... and does not allow for dissociation

Anharmonic vibrations

- The harmonic potential deviates from the real interatomic potential at higher energies ...
- ... and does not allow for dissociation
- A better approximation is provided by the Morse potential:

$$
V(x)=D_{e}\left[1-e^{-a x}\right]^{2}
$$

Anharmonic vibrations

- The harmonic potential deviates from the real interatomic potential at higher energies ...
- ... and does not allow for dissociation
- A better approximation is provided by the Morse potential:

$$
V(x)=D_{e}\left[1-e^{-a x}\right]^{2}
$$

- Morse term values in terms of constants ω_{e} and $\omega_{\mathrm{e}} x_{\mathrm{e}}$ (which can be related to D_{e}, a):

$$
F(v)=\omega_{e}\left(v+\frac{1}{2}\right)-\omega_{e} x_{e}\left(v+\frac{1}{2}\right)^{2}
$$

The Morse potential

- ${ }^{7} \mathrm{Li}^{1} \mathrm{H}:$

Vibration-rotation interaction

- Real molecules vibrate and rotate at the same time
- When a molecule vibrates its moment of inertia, $I=\mu R^{2}$, changes

Vibration-rotation interaction

- The vibrational frequency is typically $10-100 \times$ faster than the rotational frequency

Vibration-rotation interaction

- The vibrational frequency is typically $10-100 \times$ faster than the rotational frequency
- To a first approximation we may consider the rotational energy as a time-average over a vibrational period:

$$
\begin{gathered}
\left\langle E_{\mathrm{rot}}(J ; v)\right\rangle=\frac{\hbar^{2} J(J+1)}{2 \mu}\left\langle\frac{1}{R^{2}}\right\rangle \\
\left\langle\frac{1}{R^{2}}\right\rangle=\int_{-\infty}^{\infty} \psi_{v}^{*} \frac{1}{R^{2}} \psi_{v} \mathrm{~d} R
\end{gathered}
$$

Vibration-rotation interaction

- The vibrational frequency is typically $10-100 \times$ faster than the rotational frequency
- To a first approximation we may consider the rotational energy as a time-average over a vibrational period:

$$
\begin{gathered}
\left\langle E_{\mathrm{rot}}(J ; v)\right\rangle=\frac{\hbar^{2} J(J+1)}{2 \mu}\left\langle\frac{1}{R^{2}}\right\rangle \\
\left\langle\frac{1}{R^{2}}\right\rangle=\int_{-\infty}^{\infty} \psi_{v}^{*} \frac{1}{R^{2}} \psi_{v} \mathrm{~d} R
\end{gathered}
$$

- Hence:

$$
B_{v}=\frac{h}{8 \pi^{2} c \mu}\left\langle\frac{1}{R^{2}}\right\rangle
$$

Vibration-rotation interaction

- The vibrational frequency is typically $10-100 \times$ faster than the rotational frequency
- To a first approximation we may consider the rotational energy as a time-average over a vibrational period:

$$
\begin{gathered}
\left\langle E_{\mathrm{rot}}(J ; v)\right\rangle=\frac{\hbar^{2} J(J+1)}{2 \mu}\left\langle\frac{1}{R^{2}}\right\rangle \\
\left\langle\frac{1}{R^{2}}\right\rangle=\int_{-\infty}^{\infty} \psi_{v}^{*} \frac{1}{R^{2}} \psi_{v} \mathrm{~d} R
\end{gathered}
$$

- Hence:

$$
B_{v}=\frac{h}{8 \pi^{2} c \mu}\left\langle\frac{1}{R^{2}}\right\rangle=B_{e}-\alpha_{e}\left(v+\frac{1}{2}\right)+\gamma_{e}\left(v+\frac{1}{2}\right)^{2}+\cdots
$$

Vibration-rotation interaction

Vibration-rotation interaction

- Term values: $F(J, v)=T_{e}+\omega_{e}\left(v+\frac{1}{2}\right)-\omega_{e} x_{e}\left(v+\frac{1}{2}\right)^{2}+\omega_{e} y_{e}\left(v+\frac{1}{2}\right)^{3}+\cdots$

$$
+B_{v} J(J+1)-D_{v} J^{2}(J+1)^{2}+H_{v} J^{3}(J+1)^{3}+\cdots
$$

Vibration-rotation interaction

- Term values: $\quad F(J, v)=T_{e}+\omega_{e}\left(v+\frac{1}{2}\right)-\omega_{e} x_{e}\left(v+\frac{1}{2}\right)^{2}+\omega_{e} y_{e}\left(v+\frac{1}{2}\right)^{3}+\cdots$

$$
+B_{v} J(J+1)-D_{v} J^{2}(J+1)^{2}+H_{v} J^{3}(J+1)^{3}+\cdots
$$

- Even ignoring centrifugal distortion:

$$
v\left(v=1, J^{\prime} \leftarrow v=0, J\right)=\omega_{e}-2 \omega_{e} x_{e}+B_{1} J^{\prime}\left(J^{\prime}+1\right)-B_{0} J(J+1),
$$

$$
B_{1}<B_{0}
$$

Vibration-rotation interaction

$$
v\left(v=1, J^{\prime} \leftarrow v=0, J\right)=\omega_{e}-2 \omega_{e} x_{e}+B_{1} J^{\prime}\left(J^{\prime}+1\right)-B_{0} J(J+1),
$$

- Rewritten for the two branches (P: $\Delta J=-1, \mathrm{R}: \Delta J=+1$)

$$
\begin{aligned}
& \nu_{P}(J)=\tilde{v}_{0}-\left(\boldsymbol{B}_{1}+\boldsymbol{B}_{0}\right) \boldsymbol{J}+\left(\boldsymbol{B}_{1}-\boldsymbol{B}_{0}\right) \boldsymbol{J}^{2} \\
& \nu_{R}(\boldsymbol{J})=\tilde{\nu}_{0}+\left(\boldsymbol{B}_{1}+\boldsymbol{B}_{0}\right) \boldsymbol{J}^{\prime}+\left(\boldsymbol{B}_{1}-\boldsymbol{B}_{0}\right) \boldsymbol{J}^{\prime 2}
\end{aligned}
$$

Vibration-rotation interaction

$$
v\left(v=1, J^{\prime} \leftarrow v=0, J\right)=\omega_{e}-2 \omega_{e} x_{e}+B_{1} J^{\prime}\left(J^{\prime}+1\right)-B_{0} J(J+1),
$$

- Rewritten for the two branches (P: $\Delta J=-1, \mathrm{R}: \Delta J=+1$)

$$
\begin{aligned}
& v_{P}(J)=\tilde{v}_{0}-\left(B_{1}+B_{0}\right) \boldsymbol{J}+\left(\boldsymbol{B}_{1}-B_{0}\right) J^{2} \\
& \nu_{R}(J)=\tilde{v}_{0}+\left(\boldsymbol{B}_{1}+B_{0}\right) J^{\prime}+\left(B_{1}-B_{0}\right) J^{\prime 2} \\
& \Rightarrow \quad \tilde{v}_{P, R}=\tilde{v}_{0}+\left(B_{1}+B_{0}\right) m+\left(\boldsymbol{B}_{1}-B_{0}\right) m^{2} \quad m= \begin{cases}-\boldsymbol{J}^{\prime \prime} & \text { if } \Delta \boldsymbol{J}=-1 \\
+\boldsymbol{J}^{\prime} & \text { if } \Delta \boldsymbol{J}=+1\end{cases}
\end{aligned}
$$

Vibration-rotation interaction

$$
v\left(v=1, J^{\prime} \leftarrow v=0, J\right)=\omega_{e}-2 \omega_{e} x_{e}+B_{1} J^{\prime}\left(J^{\prime}+1\right)-B_{0} J(J+1),
$$

- Rewritten for the two branches (P: $\Delta J=-1, \mathrm{R}: \Delta J=+1$)

$$
\begin{aligned}
& \nu_{P}(\boldsymbol{J})=\tilde{\nu}_{0}-\left(\boldsymbol{B}_{1}+\boldsymbol{B}_{0}\right) \boldsymbol{J}+\left(\boldsymbol{B}_{1}-\boldsymbol{B}_{0}\right) \boldsymbol{J}^{2} \\
& \nu_{R}(\boldsymbol{J})=\tilde{\nu}_{0}+\left(\boldsymbol{B}_{1}+\boldsymbol{B}_{0}\right) \boldsymbol{J}^{\prime}+\left(\boldsymbol{B}_{1}-\boldsymbol{B}_{0}\right) \boldsymbol{J}^{\prime 2}
\end{aligned}
$$

$$
\Rightarrow \quad \tilde{v}_{P, R}=\tilde{v}_{0}+\left(\boldsymbol{B}_{1}+\boldsymbol{B}_{0}\right) m+\left(\boldsymbol{B}_{1}-\boldsymbol{B}_{0}\right) m^{2}
$$

$$
m= \begin{cases}-J^{\prime \prime} & \text { if } \Delta J=-1 \\ +J^{\prime} & \text { if } \Delta J=+1\end{cases}
$$

Linear least-squares fit to the "Fortrat parabola":

$$
\begin{aligned}
& B_{0}=19.84424 \mathrm{~cm}^{-1} \\
& B_{l}=19.12415 \mathrm{~cm}^{-1} \\
& B_{e}=20.20428 \mathrm{~cm}^{-1} \\
& \alpha_{e}=0.72009 \mathrm{~cm}^{-1}
\end{aligned}
$$

Hot bands and overtones

- Anharmonicity relaxes the selection rule $\Delta v= \pm 1$, allowing overtone bands with $\Delta v= \pm 2, \pm 3, \ldots$

Hot bands and overtones

- Anharmonicity relaxes the selection rule $\Delta v= \pm 1$, allowing overtone bands with $\Delta v= \pm 2, \pm 3, \ldots$
- At low temperature, for most diatomic molecules, only the $v=0$ level is appreciably occupied $\left(\hbar \omega \gg k_{\mathrm{B}} T \Rightarrow e^{-E v k_{\mathrm{B}} T} \ll 1\right)$.

Hot bands and overtones

- Anharmonicity relaxes the selection rule $\Delta v= \pm 1$, allowing overtone bands with $\Delta v= \pm 2, \pm 3, \ldots$
- At low temperature, for most diatomic molecules, only the $v=0$ level is appreciably occupied ($\hbar \omega \gg k_{\mathrm{B}} T \Rightarrow e^{-E v k_{\mathrm{B}} T} \ll 1$).
- As Tincreases, transitions originating on $v=1$ and higher appear.

Rovibrational spectrum of CO (800 K)

- CO fundamental band ($v=1 \leftarrow 0$), and hot band ($v=2 \leftarrow 0$)

Rovibrational spectrum of CO (800 K)

- CO first overtone band $(v=2 \leftarrow 0)$, and hot band $(v=3 \leftarrow 1)$

Rovibrational spectrum of CO (800 K)

- CO second overtone band ($v=3 \leftarrow 0$), and hot band ($v=4 \leftarrow 1$)

Rovibrational spectrum of CO (800 K)

- CO second overtone band ($v=3 \leftarrow 0$), and hot band ($v=4 \leftarrow 1$)

Rotational spectroscopy of polyatomics

- The moment of inertia of any three-dimensional object can be described with a component about each of its three principal axes. Define:

$$
I_{a} \leq I_{b} \leq I_{c}
$$

Rotational spectroscopy of polyatomics

- The moment of inertia of any three-dimensional object can be described with a component about each of its three principal axes. Define:

$$
I_{a} \leq I_{b} \leq I_{c}
$$

- For a linear molecule (e.g. $\mathrm{HCl}, \mathrm{CO}_{2}$) has: $I_{a}=0, I \equiv I_{b}=I_{c}$

Rotational spectroscopy of polyatomics

- The moment of inertia of any three-dimensional object can be described with a component about each of its three principal axes. Define:

$$
I_{a} \leq I_{b} \leq I_{c}
$$

- For a linear molecule (e.g. $\mathrm{HCl}, \mathrm{CO}_{2}$) has: $I_{a}=0, I \equiv I_{b}=I_{c}$
- An spherical top (e.g. $\mathrm{CH}_{4}, \mathrm{SF}_{6}$) has: $I_{a}=I_{b}=I_{c}$

Rotational spectroscopy of polyatomics

- The moment of inertia of any three-dimensional object can be described with a component about each of its three principal axes. Define:

$$
I_{a} \leq I_{b} \leq I_{c}
$$

- For a linear molecule (e.g. $\mathrm{HCl}, \mathrm{CO}_{2}$) has: $I_{a}=0, I \equiv I_{b}=I_{c}$
- An spherical top (e.g. $\mathrm{CH}_{4}, \mathrm{SF}_{6}$) has: $I_{a}=I_{b}=I_{c}$
- An asymmetric top (e.g. $\mathrm{H}_{2} \mathrm{O}$) has: $I_{a} \neq I_{b} \neq I_{c}$

Rotational spectroscopy of polyatomics

- The moment of inertia of any three-dimensional object can be described with a component about each of its three principal axes. Define:

$$
I_{a} \leq I_{b} \leq I_{c}
$$

- For a linear molecule (e.g. $\mathrm{HCl}, \mathrm{CO}_{2}$) has: $I_{a}=0, I \equiv I_{b}=I_{c}$
- An spherical top (e.g. $\mathrm{CH}_{4}, \mathrm{SF}_{6}$) has: $I_{a}=I_{b}=I_{c}$
- An asymmetric top (e.g. $\mathrm{H}_{2} \mathrm{O}$) has: $I_{a} \neq I_{b} \neq I_{c}$
- We will briefly consider the remaining case: the symmetric top.

Symmetric top molecules

- There are two cases:
- Prolate (rugby ball-shaped): $I_{a}<I_{b}=I_{c}$
- Oblate (flying saucer-shaped): $I_{a}=I_{b}<I_{c}$

Symmetric top molecules

- The general rotational kinetic energy operator:

$$
\hat{H}_{\mathrm{rot}}=\frac{\hat{J}_{a}^{2}}{2 I_{a}}+\frac{\hat{J}_{b}^{2}}{2 I_{b}}+\frac{\hat{J}_{c}^{2}}{2 I_{c}}
$$

Symmetric top molecules

- The general rotational kinetic energy operator:

$$
\hat{H}_{\mathrm{HI}}=\frac{\hat{J}_{a}^{2}}{2 I_{a}}+\frac{\hat{J}_{b}^{2}}{2 I_{b}}+\frac{\hat{J}_{c}^{2}}{2 I_{c}}
$$

- Rewrite in terms of the total rotational angular momentum operator, $\hat{J}^{2}=\hat{J}_{a}^{2}+\hat{J}_{b}^{2}+\hat{J}_{c}^{2}$:

$$
\hat{H}_{\text {rot }}=\frac{\hat{J}^{2}}{2 I_{b}}+\hat{J}_{a}^{2}\left(\frac{1}{2 I_{a}}-\frac{1}{2 I_{b}}\right),
$$

Symmetric top molecules

- The general rotational kinetic energy operator:

$$
\hat{H}_{\mathrm{rot}}=\frac{\hat{J}_{a}^{2}}{2 I_{a}}+\frac{\hat{J}_{b}^{2}}{2 I_{b}}+\frac{\hat{J}_{c}^{2}}{2 I_{c}}
$$

- Rewrite in terms of the total rotational angular momentum operator, $\hat{J}^{2}=\hat{J}_{a}^{2}+\hat{J}_{b}^{2}+\hat{J}_{c}^{2}$:

$$
\hat{H}_{\mathrm{rot}}=\frac{\hat{J}^{2}}{2 I_{b}}+\hat{J}_{a}^{2}\left(\frac{1}{2 I_{a}}-\frac{1}{2 I_{b}}\right),
$$

- This Hamiltonian is diagonal in the basis $|J, K\rangle$:
- $J=0,1,2, \ldots$: total angular momentum quantum number
- $K=-J,-J+1, \ldots, J$: projection of J along the symmetry axis

Symmetric top molecules

- Rotational term values for a prolate symmetric top:

$$
F(J, K)=B J(J+1)+K^{2}(A-B) .
$$

where: $A=\hbar /\left(8 \pi^{2} c I_{a}\right)$ and $B=\hbar /\left(8 \pi^{2} c I_{b}\right)$.
(For an oblate symmetric top, replace I_{a} with I_{c}, A with C).

Symmetric top molecules

- Rotational term values for a prolate symmetric top:

$$
F(J, K)=B J(J+1)+K^{2}(A-B)
$$

where: $A=\hbar /\left(8 \pi^{2} c I_{a}\right)$ and $B=\hbar /\left(8 \pi^{2} c I_{b}\right)$.
(For an oblate symmetric top, replace I_{a} with I_{c}, A with C).

- But... the selection rules are $\Delta J= \pm 1$ and $\Delta K=0$ (no change of dipole moment as the molecule rotates about its symmetry axis), so:

$$
\tilde{v}(J, K)=F(J+1, K)-F(J, K)=2 B(J+1)
$$

Symmetric top molecules

- Rotational term values for a prolate symmetric top:

$$
F(J, K)=B J(J+1)+K^{2}(A-B)
$$

where: $A=\hbar /\left(8 \pi^{2} c I_{a}\right)$ and $B=\hbar /\left(8 \pi^{2} c I_{b}\right)$.
(For an oblate symmetric top, replace I_{a} with I_{c}, A with C).

- But... the selection rules are $\Delta J= \pm 1$ and $\Delta K=0$ (no change of dipole moment as the molecule rotates about its symmetry axis), so:

$$
\tilde{v}(J, K)=F(J+1, K)-F(J, K)=2 B(J+1)
$$

- Unless we consider centrifugal distortion:

$$
\tilde{v}(J, K)=2\left(B-D_{J K} K^{2}\right)(J+1)-4 D_{J}(J+1)^{3},
$$

Rotational spectrum of phosphine

- Phosphine $\left(\mathrm{PH}_{3}\right)$ is an oblate symmetric top

Rotational spectrum of phosphine

- The pure rotational transition $J=9 \leftarrow 8$ in PH_{3} :

Rotational spectrum of phosphine

- Fit the spectroscopic parameters $B, D_{J K} D_{J}$

$$
\tilde{v}(J, K)=2\left(B-D_{J K} K^{2}\right)(J+1)-4 D_{J}(J+1)^{3},
$$

In this case, we get:
$B=4.45236169 \mathrm{~cm}^{-1}$
$D_{J K}=-0.00016877 \mathrm{~cm}^{-1}$
$D_{J}=0.00012956 \mathrm{~cm}^{-1}$

Vibrational spectroscopy: polyatomics

- A molecule with more than two atoms will have several vibrational motions available to it

Vibrational spectroscopy: polyatomics

- A molecule with more than two atoms will have several vibrational motions available to it
- For small vibrational amplitudes, all possible motions can be composed as a linear combination of normal vibrational modes for which the nuclei all move through their equilibrium positions at the same time.

Vibrational spectroscopy: polyatomics

- A molecule with more than two atoms will have several vibrational motions available to it
- For small vibrational amplitudes, all possible motions can be composed as a linear combination of normal vibrational modes for which the nuclei all move through their equilibrium positions at the same time.
- Non-linear molecules: $3 N$ - 6 normal modes
- Linear molecules: $3 N-5$ normal modes

Vibrational spectroscopy: polyatomics

- A molecule with more than two atoms will have several vibrational motions available to it
- For small vibrational amplitudes, all possible motions can be composed as a linear combination of normal vibrational modes for which the nuclei all move through their equilibrium positions at the same time.
- Non-linear molecules: $N_{\text {vib }}=3 N-6$ normal modes
- Linear molecules: $N_{\text {vib }}=3 N-5$ normal modes
- A normal mode may be degenerate $\left(d_{k}\right)$

$$
E_{\text {vib }}=\sum_{k=1}^{N_{\text {vil }}} \hbar \omega_{k}\left(v_{k}+\frac{d_{k}}{2}\right)
$$

Vibrational spectroscopy: polyatomics

- Example: $\mathrm{H}_{2} \mathrm{O}$ normal modes

Vibrational spectroscopy: polyatomics

- Example: CO_{2} normal modes - parallel and perpendicular

Vibrational spectroscopy: polyatomics

- Example: CO_{2} normal modes - parallel and perpendicular

Only modes with a change in dipole moment on vibration are allowed ("IR-active") (electric dipole gross selection rule)

Vibrations of linear polyatomics

- Selection rules
- Parallel vibrations: $\Delta J= \pm 1$

Vibrations of linear polyatomics

- Selection rules
- Parallel vibrations: $\Delta J= \pm 1$
- Perpendicular vibrations: $\Delta J=0, \pm 1$
- Vibrational angular momentum:

Vibrational spectroscopy: polyatomics

- Example: CO_{2} vibrational energy levels
- The notation used: $\left(v_{1} v_{2}^{l} v_{3}\right), l=-v_{2},-v_{2}+2, \cdots, v_{2}-2, v_{2}$

Vibrational spectroscopy: polyatomics

- Example: CO_{2} vibrational energy levels
- The notation used: $\left(v_{1} v_{2}^{l} v_{3}\right), l=-v_{2},-v_{2}+2, \cdots, v_{2}-2, v_{2}$

Vibrations of linear polyatomics

- The $\left(01^{1} 0\right)-\left(00^{0} 0\right)$ band (P, Q and R branches)

Vibrations of linear polyatomics

- The $\left(00^{0} 1\right)-\left(00^{0} 0\right)$ band (P, Q and R branches)

