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Vibrational spectroscopy
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Vibrational spectroscopy
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F16. 3.—Observations of the spectrum of Mars obtained on four nights and after division by the solar
spectrum (solid curve of Fig. 2).
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Vibrational motion

e First consider the the vibration of a non-rotating molecule:

2
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RAR\ " drR) "2 2uUR?

becomes:

R —E V.(R)S =0
R2 dR( dR)+ (E = V()



Vibrational motion

e First consider the the vibration of a non-rotating molecule:

2
L d (adS\ 200 | op JUDR o o
RAR\ " drR) " 72 2 uR?

becomes:

R —E V.(R)S =0
R? dR( dR>+ (E = V()

® Vu(R) is in general a complex function that depends on the
electronic wavefunction, but for small displacements from
R.:

dv, 1 d?V,
(R— e)+_

2
R |z, 2 dR? |, (R— Re

Va(R) = Vu(R




Vibrational motion

v,

1 d*V,
V.(R) =V, (R,) + ——
(R) (R.) iR

2 dR?

(R—R,) + (R=R,)" + -

R R,

© We can choose the first term to be zero
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Vibrational motion

v,

1 d*V,
V.(R) = V,(R,) + ——
(R) (R.) T

2 dR?

(R—R,) +
R,

© We can choose the first term to be zero
© The second term is zero

© We can define the “bond force constant”:
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Vibrational motion

v,

1 d?V,
V.(R) = V,(R,) + ==
(R) (R.) TR

2 dR?

(R—R.) + (R=R,)" +

R R,

© We can choose the first term to be zero
© The second term is zero

© We can define the “bond force constant”:
_d¥,
~ dR? |,

L
2
(the parabolic potential used earlier)

® So: V,(R) % —k(R — Re)*



Vibrational motion

e Within this approximation:
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Vibrational motion

e Within this approximation:

L d (gedS), 2x E—lk(R—Re)z S =0
R? dR dR h2 2

© Make the substitution:

S(R) = w(x) , Wwhere x = R— R,

x+ R,

is the displacement of the nuclei from equilibrium to get:
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Vibrational motion

e Within this approximation:

L d (gedS), 2x E—lk(R—Re)2 S =0
R? dR dR h2 2

© Make the substitution:

S(R) = w(x) , Wwhere x = R— R,

x+ R,

is the displacement of the nuclei from equilibrium to get:

e Harmonic motion with frequency @ = v/k/u
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Vibrational motion

@ Further transformation to “natural units”:
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Vibrational motion

@ Further transformation to “natural units”:

RPd*) 1
- “kx*p =F
211 da? " o g g

q=ar =x=q/x

N _h2a2d2w _’_lk (q)zw _ Bu

2 dg? 2

1d*p 1, ku 14
= ———— 4+ — = F

2 dg? i 27 h? 1Y hzoﬂw
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Vibrational motion

@ Further transformation to “natural units”:

RPd*) 1
- “kx*p =F
211 da? " o g g

q=ar =x=q/x

L P pde 1 (%)% — Ey

2 dg? 2
1d*p 1, ku 14
SO —
2 dg? i 27 h? 1Y hzoﬂw
e Choose
k e\ A 1d% 1, . h  E pn E
2'&4 =]1l=a= —'L; — ;) | —qz?r.".,-’ — F ‘2 v =— LL' = — Y
h’a h 2dgs 2 he\/ku h\ k Fuw




Vibrational motion

1/4
o Further transformation to “natural units”: g = (uk/h*) " x

1d’y 1, E

2742 27 T he?

e The energy levels are quantized in terms of a quantum
number,v=0,1,2,...
E, = ho(v + %)
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Vibrational motion

1/4
o Further transformation to “natural units”: g = (uk/h*) " x

1d’y 1, E

2742 27 T he?

e The energy levels are quantized in terms of a quantum
number,v=0,1,2,...
E, = ho(v + %)

® The wavefunctions have the form:
w(q) = NyH,(q) CXP(—qz/z),

where N, is a normalization constant and H.,(q) is a Hermite
polynomial.
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The Hermite polynomials

e Starting with:

define C = 2E/hw and rearrange:

dzl//

d—qz‘F(C—qz)W:O
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The Hermite polynomials

e Starting with:

define C = 2E/hw and rearrange:

d2y/

d—qz'*'(C—qz)lI/:O

o For C=1(i.e. Eo = 1hw)the solution is wo(@) = Noe™”
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The Hermite polynomials

e Starting with: 1y 1, E

27422 29 T e

define C = 2E/hw and rearrange:

dzl//

d—qz+(C—q2)ll/=0

o For C=1(i.e. Eo = ho) the solution is wo(g) = Noe™ "

@ This is the ground state (and E is non-zero)
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The Hermite polynomials

e Starting with:

define C = 2E/hw and rearrange:

dzy/

d_qz+(c—q2)u/=0

o For C=1(ie. Ey = ihw)the solution is wo(@ = Noe ™"

@ This is the ground state (and E is non-zero)

. )
e The more general ansatz is wu(q) = Hy(g)e *"

some finite polynomial which must satisfy

where H,(q) is

d’H, dH,
— 2(]
dg? dg

+(C—-1)H = 0.
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The Hermite polynomials

d’H, dH,
— 2q
dg? dg

+(C—-1H = 0.

@ This equation is well known and its solutions are the
Hermite polynomials, defined by

H,(q) = (-1)%7 c (e_qz),
dgV

wherev=0,1,2, ...



The Hermite polynomials

d’H, dH,
— 2q
dg? dg

+(C—-1H = 0.

@ This equation is well known and its solutions are the
Hermite polynomials, defined by

2 d” 2
— (—1\V 4 —q
Hy(g) = (1)’ dqv(e ).
wherev=0,1,2,...

o H,(g) are orthogonal with respect to the weight function e

[ Ha@H @€ dg = 72



The Hermite polynomials

d’H, dH,
— 2q
dg? dg

+(C—-1H = 0.

@ This equation is well known and its solutions are the
Hermite polynomials, defined by

H,(g) = (1)’ c (e—qz)s
dgV

wherev=0,1,2, ...

o H,(g) are orthogonal with respect to the weight function e

[ Ha@H @€ dg = 72

@ And obey the recursion relation:

Hpyq (9) = 2qH,(q) — 2nH,_,(g).
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Harmonic oscillator wavefunctions

w(q)




Harmonic oscillator probabilities

w(q)|”
v=4 E, = Jhw
v =23 E; = Ihw
v =2 E, = 2hw
v =1 E, = $hw
v=>0 Ey = jhw
| _9 0 2 1

q



Harmonic oscillator probabilities
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Harmonic oscillator probabilities
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Harmonic vibrational transitions

e The transition probability from one vibrational state, v to
another v’ is the square of the transition dipole moment:
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e The transition probability from one vibrational state, v to
another v’ is the square of the transition dipole moment:
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@ The dipole moment operator is a complex function of g but
may be expanded in a Taylor series:




Harmonic vibrational transitions

e The transition probability from one vibrational state, v to
another v’ is the square of the transition dipole moment:

00
My =/ W;'/}(Q)Wv” dg.
-0

@ The dipole moment operator is a complex function of g but
may be expanded in a Taylor series:

® Therefore,




Harmonic vibrational transitions

e The transition probability from one vibrational state, v to
another v’ is the square of the transition dipole moment:

00
My =/ W;'/}(Q)Wv” dg.

o0

@ The dipole moment operator is a complex function of g but
may be expanded in a Taylor series:

n du
= o+ <= g+
dq o
e Therefore,
M,y = ﬂO/ o Yo" dg + d_ / W;;r g Yy dg
%) 910 J -
du ¥ P
My = —| Ny Ny € HU”(Q)qu’ dg-
dq 0 -0
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Harmonic vibrational transitions

du
MUIUII
dg g

e H,(q)qH,, dg.

© From the recursion relation Hu+1(q9) = 2qH,(q) —2nH,_1(q).

I I |
Nv”Nv’ € 7 [EHU”+1(Q) + U”Hv”—l(Q) Hv”(Q) dqa
00



Harmonic vibrational transitions

_ du
v'v dq

M

00
Nv”Nv’ / e—q~ Hv”(Q)qHU’ dg-
0 —00

© From the recursion relation Hu+1(q9) = 2qH,(q) —2nH,_1(q).

du
MUIUII — —
dg

I I |
NU”NU’/ € 1 [EHU”+1(Q) + v”HU”—l(Q) Hv”(Q) dga
0 —00

® The “selection rules” are:

du #0 and Av =10 - = +1.
dq |y




Harmonic vibrational transitions

_ du
vv dq

M

00
Nv”Nv’ / e—q~ Hv"(Q)qu’ dg-
0 —00

© From the recursion relation Hu+1(q9) = 2qH,(q) —2nH,_1(q).

du
MU' U” —_— —
dg

I I |
NU”NU’/ € 1 [EHU”+1(Q) + U”Hv”—l(Q) HU”(Q) dq,
0 —00

® The “selection rules” are:

du

#0 Yand Av =0 -V = +1.
dq |o

“oross” selection rule

@ Homonuclear diatomic molecules (e.g. Hz) do not have an
electric-dipole allowed vibrational spectrum



Rovibrational transitions

o Further selection rule on J; AJ = +1
© P(AJ=-1) and R (AJ=+1) branches:
o e.g. CO fundamental band: v=1 « 0

le-18
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Rovibrational transitions
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Anharmonic vibrations

@ The harmonic potential deviates from the real interatomic
potential at higher energies ...

® ... ahd does not allow for dissociation



Anharmonic vibrations

@ The harmonic potential deviates from the real interatomic
potential at higher energies ...

® ... ahd does not allow for dissociation

@ A better approximation is provided by the Morse potential.
V(x) = D, [1 — ]’



Anharmonic vibrations

@ The harmonic potential deviates from the real interatomic
potential at higher energies ...

® ... ahd does not allow for dissociation

@ A better approximation is provided by the Morse potential.
2

V(x) = D, 1 — e
@ Morse term values in terms of constants w. and wexe (Which
can be related to D, a):

FO) = 00+ ) = 0,50 + )



The Morse potential
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Vibration-rotation interaction

@ Real molecules vibrate and rotate at the same time

e When a molecule vibrates its moment of inertia, I = uR?,
changes




Vibration-rotation interaction

e The vibrational frequency is typically 10 - 100x faster than
the rotational frequency



Vibration-rotation interaction

e The vibrational frequency is typically 10 - 100x faster than
the rotational frequency

@ To a first approximation we may consider the rotational
energy as a time-average over a vibrational period:

LRI+ [ 1
(Erot(-]s U)) - 2/1 <R2 >




Vibration-rotation interaction

e The vibrational frequency is typically 10 - 100x faster than
the rotational frequency

@ To a first approximation we may consider the rotational
energy as a time-average over a vibrational period:

2
(Erot(J;0)) = (Sl 1)< : >

2u R2

@ Hence:

B — h 1>
8m2cu \ R?




Vibration-rotation interaction

e The vibrational frequency is typically 10 - 100x faster than
the rotational frequency

@ To a first approximation we may consider the rotational
energy as a time-average over a vibrational period:

LRI+ [ 1
(Erot(-]s U)) - 2/1 <R2 >

@ Hence:

h 1 1 1
B -_— — —_— — e — 2 LR
v 87r2c;4<R2> Be — a.(v + 2)+y (v + 2) +



Vibration-rotation interaction

' 1 S, | B
o=(R) Rg<R—2>=g . e=(R)
v=4 ,:\ v=0o ,

oy

T

e NN (D [P PP A N
-9

oY

1 1 1
Bv= — e— e — e —2 cee
- <R2> B a(v+2)+y(v+2)+ a,> 0



Vibration-rotation interaction

e Term values: FU,v)=T. + w.(w+ %) — we X (U + %)2 + @, y.(V + %)3 + oo
+ B,J(J +1) = D, J*(J + 1)* + HJ (J + 1) + -



Vibration-rotation interaction

o Termvalues: FU,0)=T. + @@+ 2) - x0 + 27 +wepeo + 57 + -
+B,JJ +1) =D, J*(J+ 1) + H,JJ(J + 1) + -
e Even ignoring centrifugal distortion:

viv=1,J" «v=0,J)=w, —2w.x. + BiJ' (J' +1) = ByJ(J + 1),

le—-19
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Vibration-rotation interaction

@, — 2w, x|+ B1J' (J ' + 1) — ByJ(J + 1),
Vo

@ Rewritten for the two branches (P: AJ =-1, R; AJ = +1)

viv=1,J"«<v=0,J)=

vp(J) = ¥y — (B; + By)J + (B, — By)J*
vr(J) = Vo + (By + Bo)J' + (B — By)J "



Vibration-rotation interaction

viv=1,J" «v=0,J) =|lw, —2w.x.|+ B1J' (J' +1) = ByJ(J + 1),
Vo

@ Rewritten for the two branches (P: AJ=-1, R: AJ =+1)

vp(J) = ¥ — (B + By)J + (B — By)J *
vr(J) =V + (B; + By)J' + (B; — By)J "
m_{—J” if AJ = -1

=  Upr = Vo + (B + Bo)m + (B, — Bo)m’ I AT = 41



Vibration-rotation interaction

viv=1,J" «v=0,J) =|lw, —2w.x.|+ B1J' (J' +1) = ByJ(J + 1),
Vo

@ Rewritten for the two branches (P: AJ =-1, R; AJ = +1)

vp(J) = ¥ — (B + By)J + (B — By)J *
vr(J) =V + (B; + By)J' + (B; — By)J "
m_{—J” if AJ = -1

=  Vpr = Vo + (B + Bo)m + (B, — Bo)m’ +J'  if AJ = +1

Linear least-squares fit to the
“Fortrat parabola”:

0- Bo=19.84424 cm-!
B;=19.12415 cm-!
B, =20.20428 cm-!
o = 0.72009 cm-!

3000 3200 3400 3600 3800 4000 4200 4400
W)



Hot bands and overtones

@ Anharmonicity relaxes the selection rule Av = +1, allowing
overtone bands with Av=+2,+3, ...
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@ Anharmonicity relaxes the selection rule Av = +1, allowing
overtone bands with Av=+2,+3, ...

@ At low temperature, for most diatomic molecules, only the
v =0 level is appreciably occupied (7o > ksT = ¢ "7 « 1),



Hot bands and overtones

@ Anharmonicity relaxes the selection rule Av = +1, allowing
overtone bands with Av=+2,+3, ...

@ At low temperature, for most diatomic molecules, only the
v =0 level is appreciably occupied (7o > ksT = ¢ "7 « 1),

@ As T increases, transitions originating on v = 1 and higher
appear.



Rovibrational spectrum of CO (800 K)

@ CO fundamental band (v=1 < 0), and hot band (v =2 < 0)
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Rovibrational spectrum of CO (800 K)

e CO first overtone band (v=2 < 0), and hot band (v=3 < 1)
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Rovibrational spectrum of CO (800 K)

@ CO second overtone band (v=3 < 0), and hotband (v=4 < 1)
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Rovibrational spectrum of CO (800 K)

@ CO second overtone band (v=3 < 0), and hotband (v=4 < 1)

le—-23

0 . _“M‘hmmu]hnll_ II

6050 6100 6150 6200 6250 6300 6350 6400 6450
v/em™1

band head



Rotational spectroscopy of polyatomics

e The moment of inertia of any three-dimensional object can
be described with a component about each of its three
principal axes. Define:

I <I,<I
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Rotational spectroscopy of polyatomics

e The moment of inertia of any three-dimensional object can
be described with a component about each of its three
principal axes. Define:

[, <[, <I.
e For alinear molecule (e.g. HCI, COz) has: [, =0,I=1, =1,
o An spherical top (e.g. CH4, SFe) has: [, =1, =1,
® An asymmetric top (e.g. H2O) has: I, # 1, # 1.

e We will briefly consider the remaining case: the symmetric
top.



Symmetric top molecules

@ There are two cases:
e Prolate (rugby ball-shaped): [ <1, =1,
® Oblate (flying saucer-shaped): [, =1, <1.

.I'T.l Z ‘t?|| Z

|



Symmetric top molecules

e The general rotational kinetic energy operator:

A2 A2 A2
A= ooy o e
°Tor, 21, 2,
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e The general rotational kinetic energy operator:

e Rewrite in terms of the total rotational angular momentum
operator, J2=J2+J2+J2:




Symmetric top molecules

e The general rotational kinetic energy operator:

A2 A2 A2
Ao=te b e
°Tor, 21, 2,

e Rewrite in terms of the total rotational angular momentum
operator, J2=J2+J2+J2:

A J 1\2 1 1
Ho=—+1J - —1,
DY ( 21, 2I, )

@ This Hamiltonian is diagonal in the basis |J,K):

e J=0,1,2,.... total angular momentum quantum number

e K=-J,-J+1, ..., J. projection of | along the symmetry axis



Symmetric top molecules

e Rotational term values for a prolate symmetric top:

F(J,K)=BJ(J + 1)+ K*(A - B).
where: A= n/(8z%cl,) and B = h/(8z>cl}).

(For an oblate symmetric top, replace I, with I., A with C).



Symmetric top molecules

e Rotational term values for a prolate symmetric top:

F(J,K)=BJ(J + 1)+ K*(A - B).
where: A= n/(8z%cl,) and B = h/(8z>cl}).

(For an oblate symmetric top, replace I, with I., A with C).

@ But... the selection rules are AJ=+1 and AK =0 (no change
of dipole moment as the molecule rotates about its
symmetry axis), so:

WJ,K) = F(J + 1,K) — F(J,K) = 2B(J + 1)



Symmetric top molecules

e Rotational term values for a prolate symmetric top:

F(J,K)=BJ(J + 1)+ K*(A - B).
where: A= n/(8z%cl,) and B = h/(8z>cl}).

(For an oblate symmetric top, replace I, with I., A with C).

@ But... the selection rules are AJ=+1 and AK =0 (no change
of dipole moment as the molecule rotates about its
symmetry axis), so:

WJ,K) = F(J + 1,K) — F(J,K) = 2B(J + 1)

e Unless we consider centrifugal distortion:

WJ,K)=2(B—D;xK)(J +1)—4D;(J + 1)°,



Rotational spectrum of phosphine

e Phosphine (PH3) is an oblate symmetric top

le—18
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Rotational spectrum of phosphine

@ The pure rotational transitionJ=9 « 8 in PHs:

le—17

1.2 1

1.0 -

£ 0.8 A

o

o

L 0.6 -

o

5
0.4 -
0.2 1
0.0 A

79.70 79.75 79.80 79. 85 79. 90 79. 95 80.00

m . B




Rotational spectrum of phosphine

e Fit the spectroscopic parameters B, Dk, D;
WJ,K)=2(B— D;xK*)(J +1)—4D;(J + 1)°,

. 1'0: In this case, we get:
1

* 08 B =4.45236169 cm'!

£ os- Dy = -0.00016877 cm-!
e l l l Dy = 0.00012956 cm-!

79.70 79.75 79.80 79.85 79.90 79.95 80.00
v/em—1



Vibrational spectroscopy: polyatomics

@ A molecule with more than two atoms will have several
vibrational motions available to it
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vibrational motions available to it

e For small vibrational amplitudes, all possible motions can be
composed as a linear combination of normal vibrational
modes for which the nuclei all move through their
equilibrium positions at the same time.
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e For small vibrational amplitudes, all possible motions can be
composed as a linear combination of normal vibrational

modes for which the nuclei all move through their
equilibrium positions at the same time.

@ Non-linear molecules: 3N - 6 normal modes

@ Linear molecules: 3N - 5 normal modes



Vibrational spectroscopy: polyatomics

@ A molecule with more than two atoms will have several
vibrational motions available to it

e For small vibrational amplitudes, all possible motions can be
composed as a linear combination of normal vibrational

modes for which the nuclei all move through their
equilibrium positions at the same time.

© Non-linear molecules: Nvi, = 3N - 6 normal modes
@ Linear molecules: Nvi, = 3N - 5 normal modes

@ A normal mode may be degenerate (dx)

v1b - zhwk (Uk + _>



Vibrational spectroscopy: polyatomics

e Example: H,O normal modes
A

Symmetric Stretch
O/ 3657 om’”
ol \
{
O/C%) Bend 1595 cm™
N\ &
- Asymmetric Stretch
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Vibrational spectroscopy: polyatomics

e Example: CO, normal modes - parallel and perpendicular

S S

v, 1336cm’ H

V, 2349 cm’ ‘ ‘



Vibrational spectroscopy: polyatomics

e Example: CO, normal modes - parallel and perpendicular

Only modes with a change in dipole moment on vibration are
allowed (“IR-active”) (electric dipole gross selection rule)



Vibrations of linear polyatomics

@ Selection rules

o Parallel vibrations: AJ = +1



Vibrations of linear polyatomics

@ Selection rules

o Parallel vibrations: AJ = +1
@ Perpendicular vibrations: AJ =0, £1

e Vibrational angular momentum:




Vibrational spectroscopy: polyatomics

e Example: CO; vibrational energy levels

: . [ _
o The notation used: (vv5v3), [ = —=vy, = vy +2,--, v, — 2,1,
v/emy ) I
0820 04°1__ 331 g
1680 1281_____411 0
40004 2470 200 1
320 07'0 03" 1
1
06°0 029 1 3?18
3000 - 14°0 10° 1
2290
3000 0510_0111
1370
2110
04°0———00° 1
2000 - 1290
20°%0
— 03"
1170
1080
1000 - 0270
0170

500
¢




Vibrational spectroscopy: polyatomics

e Example: CO; vibrational energy levels

: : [ _
o The notation used: (vviv3), [ = = vy, = vy + 2,4, v, — 2,1,
v/emy ) I
08°0 04°1 331 @ =
16°0 120 1 217 0 v=72
40004 2470 20° 1
320 07'0 03'1
4070 1570 1171
2 1
———06°20 02° 1 3?18
3000 - 1490 101
22%0
——30°0 0510 01 1
1370
2170
04°0 00% 1 @ecvocesocscosccsocsconocsncas 'y V= 1
2000 1290 .
20°
03'0
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1080
1000 0270 CO,
01'0

500
¢




Vibrations of linear polyatomics

e The (01'0) — (00°0) band (P, Q and R branches)

le—-18
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Vibrations of linear polyatomics

e The (00°1) = (00°0) band (P, Q and R branches)

le—18
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