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Questions to ask

* Why was the photon created?
* Who created the photon?

* What was the probability for the photon to be
created?

* How does the plasma environment affect photon
creation?

 How did the photon propagate in the plasma?
* What has changed when the photon was recorded?
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Why is atomic structure
important for plasmas?

Most of the relevant physics is inside this matrix element

("ij(a,, b,, C,, . )|6‘Lljl(a, b, C, .. ))

) interaction .
final state initial state
operator

Wavelengths

Energies

Transition probabilities (radiative and non-radiative)
Collisional cross sections
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A Few Textbooks on APP

H.R. Griem
— Plasma Spectroscopy (1964)

— Principles of Plasma
Spectroscopy (1997)

. R.D. Cowan

- Theory of Atomic Structure and
Spectra (1981)

. V.P. Shevelko and L.A.
Vainshtein

— Atomic Physics for Hot Plasmas
(1993)

D. Salzmann

- Atomic Physics in Hot Plasmas
(1998)
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T. Fujimoto
* Plasma Spectroscopy (2004)

H.-J. Kunze
* Introduction to Plasma
Spectroscopy (2009)

J. Bauche, C. Bauche-Arnoult, O.
Peyrusse
* Atomic Properties in Hot
Plasmas (2015)

Modern Methods in Collisional-
Radiative Modeling of Plasmas
(2016)

* HKC, CJF, YR,...
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Units

* Energy
e 1Ry=13.61eV =109 737 cm™ (ionization energy of H)
e 1 eV =8065.5447 cm

* Length
e a,=5.29-10° cm = 0.529 A (radius of H atom)

* Area (cross section)
* a,? = 8.8 -10'” cm? (area of H atom)

* New Sl (redefinition of base units): May 20 2019

http://physics.nist.gov/cuu/Units/
NIST
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What kind of atomic data is of
importance for spectroscopic diagnostics
of plasmas?

* Wavelengths of spectral lines
* Line/level identifications
* Level energies

* Transition probabilities (radiative and non-radiative
processes)

e Collisional cross sections and rate coefficients
* Spectral line shapes and widths
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16-electron ion (5-like): how to

describe its atomic structure?..

Superconfiguration

LS term

1224344452
| 3s523p3d24p
12283541
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Average 1%2%3 3s°3p’4s -
atom Configuration
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Hydrogen and H-like ions
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Each atomic state (wavefunction) is
characterized by a set of quantum numbers

e Generally speaking, only two are exact for an
isolated atom:

e Total angular momentum J
e Parity = (—1)2ili (but: weak interactions!)

* They are the consequences of conservation laws
* Noether theorem (1915)

e Everything else (total L, total S,...) is not exact!

NIST
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Complex atoms (non-relativistic)

We know all important interactions:

H = Hkin + Helec—nucl + Helec—elec + Hs—o +

‘Z%Vi Zn Zn, Z%éimxzi-sin...

i>]

qu(rl, 11Dy e ) — ELIJ(rl, 1I'Sp e )
The Schrodinger equation for multi-electron atoms cannot be solved exactly...
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Standard procedure

e Use central-field approximation to approximate the effects of the
Coulomb repulsion among the electrons:

1 Z
« H ~ Hy = 2?(—;\75 —,,—i+v<ri))

Properly choose the potential V(r)

Find configuration state functions Cb(ijS) (accounting also for
antisymmetry): n,|

Assume that the atomic state function is a linear combination of
CSFs:  W(yLS) = Zﬂ‘-/’ chID(ijS)

Solve Schrodinger equation for mixing coefficients:
« (H—-EI)é =0,H;; = (P LS)|H|P(y;LS))
Include other effects (perturbation theory)...and live happily!

NIST
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Relativistic atomic structure:
heavy and not so heavy ions

5 1 Dirac-Coulomb
. e 17
i 1>]
p=-iV electron momentum operator
a,f 4x4 Dirac matrices
Ve (1) extended nuclear charge distribution

Hpcp+oep = Hpc + Hrp + Hgg + Hyp

NIST
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Relativistic notations

l, > j=141/2

S172 Pip Pz d3/2 d5/2 f5/2 f7/2

p. P d. d+ f- f+
/ 0 1 1 2 2 3 3

J % % 3/2 3/2 5/2 5/2 7/2
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Energy structure of an ion

Continuum
electron-electron ~spin-orbit 54
interaction ~Z (relativistic effects) VA
Bound o | e
states 9000 -  — — \"
- levels
terms
~72 o
Every state is defined by a set of
electron-nucleus guantum numbers which are mostly
interaction approximate

OO

Electrons are grouped into shells nl
(Kn=1,Ln=2, M n=3,..)
producing configurations (or even superconfigurations)
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Z-scaling of electron energies

H = Z (p_lz — £> + i Kinetic+nuclear
n 2 Ti rij
l

i>]

[ 2 lect
New variables p; = Zr;, p; = p;/Z lead to: electrons

~2
2 | 1

H=2y (Bt )azy = 220 4 27V)
2 p; L Dij

[ 1>]
Hiy = EY = (Hy + Z- V) = (Z72E)y
E — ZZ(EO + Z_lEl + Z_ZEZ + )

1 Therefore, for high Z
EO — — the energy structure
le looks more and more H-like!

NIST

Matienal Institute of Standards and Tachnalogy YR, ICTP/IAEA School, 2019



Mg-like Al 11: 3131
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Mg-like Sr XXVII: 3131
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Importance of Z_

Spectroscopic charge: Z_=ion charge + 1 (H |, Ar XV...)

This is the charge that is seen by the outermost (valence) electron

Isoelectronic sequences: ions with the same number of
electrons
* Lil,Bell, BIl,..

It is often useful to consider variation of atomic parameters
along isoelectronic sequences

NIST
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Spin-orbit interaction

Ry az

Hydrogenic ion: (= 3] (l n 1/2) (l + 1)

. . Ry a? Z27?
Semi-theoretical Lande formula: (=
n3l(+1/2) (1 +1)
2
n*: effective n | = Ry z¢
n*2

Z: effective nuclear charge (for penetrating orbits) = Z-n for np orbitals

22‘_ZZ Zrl, sz‘(n)(l S+ -

[ i>j
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Types of coupling

* LS coupling: electron-electron » spin-orbit
* lightelements | T=0, +0L+..., S=8+%+.., J=L+S

e jj coupling: spin-orbit » electron-electron
* heavyelements | fi=0L+5, h=l+5 ... J=J1i+]o+ ..
* 252p: (2s,/,,2p, ) OF (25,2p-)

e 3d~: ((3d_3)5/21(3d+2)2)3/2

* Intermediate coupling: neither is overwhelmingly strong

e Other types of couplings exist

NIST
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Configuration sp: LS coupling (LS))

M
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Configuration sp: jj coupling

sp
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Notional Institute of Stondards and Tachnology

(1/2,3/2),

(1/2,3/2)

spin-
orbit

(1/2,1/2)

a3,

electro-
static

(1/2,1/2),

terms

(212,

levels

magnetic
field

states

YR, ICTP/IAEA School, 2019



From LS to jj: 1s2p in He-like ions

| | | T | | | | | T
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Spin-orbit interaction does depend on
nuclear charge!

¢ Ry a? Z27?
nl —
nsnp P, n3l(+1/2)(+1)
1.0 - — — — _ Lande
formula
0.8 - -
- = - |
o
© 0.6 - - 5s5p °P  6s6p °P
o) . 3s3p °P
()
£ 4] 2520°P — Bel
[o) — Mgl
o Zn |
0.2 - — Cdl
— Hgl
ns®'S,
0.0 H — — — —
2 3 4 5 6
Principal quantum number, n
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Na-like doublet: from neutral to HCI

ﬂ Fraunhofer absorption lines
ik E in the solar spectrum

Joseph von Fraunhofer Opriber und Physiker 1757-1826 Deutsche Bundespost
1wer

0.1% D1:3s,/,, =3Py,

5890 A
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Na-like doublet: from neutral to HCI

Na-like ions
| | |

o
oo

1wer

Relative splitting
o
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Little lons With a Big Charge

11 electrons

Sodium-like Tungsten (W?63%)
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D-doublet in Na-like W, Hf, Tq,
and Au
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Wavelength (nm)

J.D. Gillaspy et al,
Phys. Rev. A 80,
010501 (2009)
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State mixing in intermediate coupling

|W(a,b,c,...))
=a-%¥(ab,c...)+ B -¥Y(ab,c...)+y -W(ab,c,...)+...

expansion coefficients

He-like Na®:  1s2p 3P, =0.999 3P + 0.032 'P
He-like Fe#**: 1s2p 3P, = 0.960 °P + 0.281 'P
He-like Mo*%*:  1s2p 3P, = 0.874 °P + 0.486 'P

Very. VERY important for radiative transitions:

NIST
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Hund'’s rules
(equivalent electrons, LS) =

" [argestShas the lowest e el o T
energy

. 2522p? E 0 0.00 L7288
e Largest L with the same S :
has the lowest energy ?
. 25°2p? D | 2 10 192.63
* For atoms with less-than

half-filled shells, lowest J 252p° A e s
has lowest energy 2s2p° 8" | 2| a3 73520
25°2p3s P10 60 333.43
1 60 352.63
01 e [l g7 I
2522p3s Pl 61 581.82

2522p* P |2 0.000
1 158.265 252p3 D° | 3 64 086.52
0 226.977 1 64 083.85
2 64 090.95

25%2p* D | 2 15 B67.862

2522p° s 0 33 792.583

NIST
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Superconfigurations

Motivation: for very complex atoms (ions) not only the number of levels is
overwhelmingly large, but also the number of configurations

Example: 15%2s°2p°3s different n’s
1s22s5%2p°3p
1s22s22p°>3d
1s)?(2s2p)’(3s3p3d)* = (1)*(2)7(3)*
1522520035 P (15)(252p)(353p3d)’ = (1P(2)'(3)
1s22s52p°3p

15°252p°3d BUT: (1s)2(2s2p)’(3s3p3d4s4padaf)!

Instead of producing millions or billions of lines, .
g . I:> Statistical methods

SCs are used to calculate Super Transition Arrays

See J. Bauche et al’s book (2015)

NIST
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Superconfigurations wvs.
detailed level accounting

10'15 T T T T T T T T 1 T 7 T T T T

10" ' 1 E
L ill'li|| W ] Ga: photoabsorption

F) :
< : cross section
= .
= - .
s 101 4 Iglesias et al (1995)
w 3
5 :
>
” 0.01*STA

10-21

Ga: T=0.3, log N =18.63
_23 L L L I L L L I L L L l L L L I L 1 .
107 4 8 12 16 20

u=photon energy/kT
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lonization potentials

* |[Ps are directly connected with ionization
distributions in plasmas

* Most often are determined from Rydberg series

T T T T T T
Ne-like ions: 1s°2s2p° _
__ 10000 F « [P e
S ) z
L bt - A+ B*Z_ + C*Z¢
I
c o
£ 1000 F o .
o o° 3
c «*
2 <° theory
(0] e T
N P
c o
100 | .7 . -
= intlext :
experiment
qo Lo e
1 10 100

Spectroscopic charge, Zy,=z+1
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lonization potentials of W ions
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o n ]
CHE Z2Ry = 74505 eV
1

106 E
; I(W73+) = 80756 eV
100 7| [ ‘ [ ‘ [ | [ | LIl | L L] ‘ [ ‘ [ | [ | [ | LIl | [ ‘ [ ‘ [ | [ 17
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lon charge
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lonization potential: constant?..

* [P is a function of plasma conditions

* High-lying states are no longer bound due to
interactions with neighboring atoms, ions, and
electrons

e Orbit radius in H I: where is n=300,000°7
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Isolated atom

| ! | ! | ! | ! | ! |
- continuum
0
n=4
. n=2
S i
L 5¢ -
> 1
3]
O -
e | X|
-10 F -
| n=1
-15 I I I . I I I
-4 -3 -2 -1 0 1 2
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lonization
potential

depression

Energy (eV)

-15

QM tunneling

NIST
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Atomic Structure Methods and Codes

Coulomb approximation (Bates-Damgaard)
. Thomas-Fermi (SUPERSTRUCTURE, AUTOSTRUCTURE)

. Single-configuration Hartree-Fock (self-consistent field)
-~ Cowan’s code (LANL)
Model potential (including relativistic)
- HULLAC, FAC
Multiconfiguration non-relativistic HF (http://nlte.nist.gov/MCHF)
Multiconfiguration Dirac-(Hartree)-Fock (MCDF or MCDHF)
- GRASP2K (http://nlte.nist.gov/MCHF)

-~ Desclaux’s code

Various perturbation theory methods (MBPT, RMBPT)

B-splines

http://plasma-gate.weizmann.ac.il/directories/free-software/

NIST
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Atomic Structure & Spectra Databases

e (Reasonably) Extensive list
* http://plasma-gate.weizmann.ac.il/directories/databases/

e Evaluated and recommended data

* NIST Atomic Spectra Database http://physics.nist.gov/asd

* Level energies, ionization potentials, spectral lines, transition
probabilities

* Other data collections
* VALD (Sweden)
 SPECTR-W3 (Russia)

CAMDB (China)

CHIANTI (USA/UK/...)

Kurucz databases (USA)

GENIE (IAEA)

NIST
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Now to radiative processes...
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Three major sources of photons

* Free-free transitions (bremsstrahlung)
c A +e > A% +e+hy

* Free-bound transitions (radiative recombination)
e At + @ 9 A(z-1)+ + hv

* Bound-bound transitions T
° Ajz+ 9 Aiz+ + hv lA - Continuum
| 1r | lonization
&0 \% = energy
Q

- Bound states

NIST
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.Bremsstrahlung (free-free)

 Calculation is straightforward for Maxwellian
electrons off bare nuclei of Z:

1/2 _hc.
;f (l) 32\/7(;(\778'0) Ry NZ Ne22[Ry] 1 ATe .G (T l) El <

* Total power loss .
T, W (4 )
=4.51x10" 4522(R j N N [ }
y

e

° sr-cm’ |
* Multicomponent plasma: E,
i Zu i
gﬂﬁ (ﬂ')zzeﬁg;f (ﬂ’) Lot —egz N = ZIZZINl
620 nm

Maximum emission at /1

T.[ev]

NIST
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Bremsstrahlung (cont’d)

2
e(AD)dA = e(w)dw w = %C

64c(aa, IR Ry "
¢ ()= cloa yNZNeZZ[T—y] e “G"(T,,0)

3c+/3r °

e

E
ef)f(E) ~ Ae Te

Notional Institute of Stondards and Tachnology
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Spectral Line Intensity

Einstein coefficient or

transition probability (s?)

Upper state density (cm)

/ v

\ (almost) purely
strongly depends . atomic parameters
on plasma conditions

Photon energy (erg)

NIST
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BB Radiative transitions

. Classical rate of loss of energy: dE/dt ~ |a|?,
and decay rate ~ |r|?for harmonic oscillator

¥,)

. Quantum treatment: (¥, ‘Vﬁ e
e’kr = 1+jkr+... ~1 (electric dipole or E1 = allowed)

- Velocity form:

Y. V|V
lengthform;  (TITIH) < et
<‘Pf r|¥) (good test!)
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QUESTION:

Why would a STATIONARY excited
state of the atomic Hamiltonian
not live forever but rather

experience a radiative decay to a
lower state?..
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S, f,and A (1)

* Line strength
e Symmetric w/r to initial-final j

Sji = ‘<'HFHJ>‘2 = 5; |

 Oscillator strength (absorption or emission)
*gf;=af; (g;=2J+1); dimensionless
e Typical values for strong lines: ~ 0.1-1

oL AES
30; Ry

NIST
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S, f,and A (2)

* Transition probability (or Einstein coefficient)

A, =4.3107 I (AE[eV ] £, [s ] "

gj |
 Typical values for neutrals: ~103-10° st
2hv? HI:  4.7e8 (1-
A — B.. g.B.=0.B. : .7e8 (1-2)
e 955 = 95 5.6e7 (1-3)
Hel: 1.8e9 (1s%-1s2p)
Lifetime: t=1/ZA; 5.7e8 (1s%-1s3p)

NIST
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Selection rules and Z-scaling

—

Fundamental law: Before: P J
parity and J do not change

After: PP

Approximate selection rules (for LS coupling):
AS=0, |[AL| £1,050

Intercombination transitions: AS#0
252 1S, —2s2p 3P,
NIST
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Selection rules and Z-scaling

*Anz0
sracZl=SoZ?
* AE oc 72 = foc Z°

A oc 24

Sji = ‘(IHFHD‘Z = Sj

An=0
srocZl1=SaocZ?
*AEocZ = foc Z1

cAoc/’
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Some useful info

e “Left” is stronger than “right” p
e fIAI=-1)>f(Al=+1)
* Hel
* f(1s2p P, —1s3s1S,) = 0.049
* f(1s2p P, - 1s3d 1D,) =0.71

* Level grouping
* Average over initial states
* Sum over final states i B
 Example: from levels to terms Z
* Any physical parameter Ji%

BA Z j§ :
[ g
j J

NIST
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Principal guantum number n

-3
32 (1 1) 11
* n-dependence forf: f(n, —n, )~ - — =
p fo ton,) 3ﬂﬁ[nf njj 53

4
372\@

f(n,>>n,)ec i,o,
n2

f(An=1)~ n~0.245n

* n-dependence for A

1

A(n, >>n, )oc —
n2

* Total radiative rate from a specific n
Z4

9/2
N

A, (n)~1.6x10"
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Mixing effects

He-like Na®:  1s2p °P, =0.999 3P + 0.032 ‘P
He-like Fe®4*: 1s2p 3P, = 0.960 3P + 0.281 ‘P
He-like Mo*%*:  1s2p 3P, = 0.874 °P + 0.486 'P

n 1s21S, - 1s2p P, | 1s? 1S, - 1s2p 3P,

2 1.8(9) 1.8(2)
11 1.3(13) 1.4(10)
26 4.6(14) 4.4(13)
42 2.6(15) 9.0(14)
54 6.7(15) 3.0(15)
74 2.2(16) 1.2(16)

NIST
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Quick estimates of A

A, =4.3-107 %(AE[eV P £, [s™]
J

Calculate A(Fe24* 1s2 1S, - 1s2p 1P,)
if fO5* 152 1S, - 152p 'P,) = 0.7

NIST ASD: 4.6-101 s’ (<10%)
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Forbidden transitions (high

muiltipoles)

* QED: En, Mn (n=1, 2,...) + Magnetic dipole (M1)

* E1/M1 dipole, E2/M?2 * Stronger within the same
quadrupole, E3/M3 configuration/term
octupole, ... * A oc Z° or stronger

. : e Same parity, |AJ| £1,
Selection rules J+21

L for ML E2, M3,.. ° Electric quadrupole (E2)
e -1 for E1, M2, E3,... e Stronger between
. Jph(En/Mn) -n configurations/terms

* A oc Z° or stronger

e Same parity, |AJ| £2,
Ji+)i22

e M3 and E3 were
measured!

Generally weak...

NIST
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Aurora borealis

Matienal Institute of Standards and Tachnalogy YR, ICTP/IAEA School, 2019



Forbidden transitions: auroras

Wavelength
2958
2972
5577
6300
6300
6364
6364
6392

NIST

Transition
lso_3|:)2
1S0_3P1
1S0'1[)2
1D2'3P2
1D,-3P,
1D,-3P,
1[)2_3|:)1
1D2_3P0

Notional Institute of Stondards and Tachnology

A(s?)
E2:2.42(-4)
M1: 7.54(-2)
E2: 1.26(+0)
M1: 5.63(-3)
F2:2.11(-5)
M1: 1.82(-3)
E2: 3.39(-6)
E2: 8.60(-7)

Energy (eV)

Ol 2p*

1S

. M1:6364A

E2: 5577 A
M1:6300A 1

11
I S D
- 3p .
e e R
1 1 1
0 1 2

Total angular momentum J

YR, ICTP/IAEA School, 2019



Scaling in Ne-like ions

Ne-like ions

= 8 =
5 61 5, 3 e :
WL 2P 'S,-2p’3p "D,: E2 P -
N
P 8.9
.r"’)/., 5-7 Z
L . Z A E
~  E o« om T m =
< el P I e ]
L e
:;; d = ':::il:::;/
2 . L
g-n _ . : 61 5 3 =
5 - 2p° S,-2p3s P,: M2 =
k= - , m ]
£ 10’ 58 L h
= . y |
= Z " ow
" om 61 51+ 3p .
: o 2p S,-2p3p P,:M :
- if 7.1 ]
10° [~ 4 |
|
‘ \ \ | | |
0 5 10 15 20 25 30

Jonsson et al, 2011

NIST
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Forbidden transitions: highly-charged W

A~ 10%-106s1

15000
Practically all strong lines are due to M1 transitions W52
within 3d" ground configurations
I W23+ ]
W53+
51
10000 W= —
=)
% i W51+ i
E
=
<
O
5000 {— W52+ —
W52+
0 I | I | I | I | I | I | | I ¥
12 13 14 15 16 17 18 19 20

NIST

Wavelength (nm)

Notional Institute of Stondards and Tachnology
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He-like Ar Levels and Lines

1s2p 1P1 152p 3p
2
1s2p 3P,
1s2p 3P,
1s2s 1S, 1525 35,
Y
N
W Z >
o <
(@\]
o % Line He® Ari6* Fe23* Kr34+
W 1.8(9) 1.1(14) 4.6(14) 1.5(15)
Y 1.8(2) 1.8(12) 4.4(13) 3.9(14)
121
5" %0 X 3.3(-1) 3.1(8)  6.5(9) 9.3(10)
z 1.3(-4) 4.8(6)  2.1(8)  5.8(9)
NIST

Matienal Institute of Standards and Tachnalogy YR, ICTP/IAEA School, 2019



Z-scaling of A’s

* W[E1]: A(1s21S,—1s2p 1P ) oc 7%
« AJ=1,P,*P,=-1,AS=0

* Y[E1]: A(1s2 1S, — 1s2p °P,)
* AJ=1,P*P,=-1,AS=1
o oc 710 for low Z
» oc 78 for large Z
» oc 74 for very large Z

* X[M2]: A(1s% 1S, — 1s2p 3P,) oc Z8
« AJ=2,P*P,=-1,AS=1

e Z[M1]: A(1s% 1S, — 1s2s 3S,) oc Z1°
* AJ=1,P*P,=-1,AS=1

Notional Institute of Stondards and Tachnology
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Why are the forbidden lines

sensw density?
0.
. E/’ /




Radiative Recombination

NIST

Notional Institute of Stondards and Tachnology

AZ+ +e > A(Z-l) + hv (inverse of photoionization)
hv=E+|

_ 64a 24( Ry Tﬂaz
3/3n° (E+1 0

Quantummechanical cross section: Uph(E): O'Kr(E)' G:f (E)

Semiclassical Kramers cross section: o, (E)

0.0015

Cross section Z-scaling:

hy 1
72772

u.)

0.0010 A

O

0.0005

Reduced cross section (a.

0.0000

YR, ICTP/IAEA School, 2019



FF+BF at Alcator C-mod: 1 eV, H

Edge: n=1
_ 1078t _
FE J0-34] n=2 | \
@
O'J(EJ 10'35 | n:3 |
2 10796 L
:é: e m m e — — -
51§ 1077 _
=1 K
-1z 10981 .
200 400 600 800

Wavelength [nm]
Lumma et al (1997)

NIST
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Collisions in plasmas

* More than one particle: collisions!
* Elastic, inelastic

Number of collisions per unit time:

projectile_density[1/cm?] *
velocity[cm/s] * [1/s]
effective_area[cm?]

v M
_€ - Electrons are much faster!
UA me

Equilibrium plasma: Te = TA

NIST
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Collision (excitation)

Continuum Main binary quantity: cross section o(E) [cm?]
7 // c Effective area for a particular process
[ 2
2 o) = [IFE0,9) do

f 1s the scattering amplitude

Process rate in plasmas:

l AE Emax
R[s™'] = N(ov) =N f o(E)-v- f(E)dE

Emin

Atom

rate coefficient Physics is here!

NIST
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Basic Parameters

. Cross sections are probabilities Vv

co

— Classically:
o(AE,E) = f P(AE,E,p) - 2npdp  ©

Y

0
. Typical values for atomic cross sections

- a,~510° cm = ma >~ 107*° cm?
. Collision strength Q (dimensionless, on the order of unity):

, Ry
-Ql] (E)

g;E

— Ratio of cross section to the de Broglie wavelength squared

0;(E) = Tas ——

- Symmetric w/r to initial and final states

NIST
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Direct and inverse

e Quantum mechanics tells us that characteristics of direct

and inverse processes are related
AE is the excitation threshold

deexcitation )
Klein-Rosseland formula:

excitation _ gi(E + AE)Uexc(E + AE) = ngadxc(E)

—AE/T

A()) +eo A(j) te Rates: |gi{OV)eoxc = gj<0'v>dxc " €

Milne formula for photoionization/photorecombination: how = E + I,

s e 2mc?
+ nhy © t+e gzﬁph(flw) — Wgz+10-rr(E)

NIST
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Types of transitions for excitation

Optically(dipole)-allowed Examples in He I

—  P-P'=-1 (different parity)

- Al =1 1s2 1S —» 1s2p 1P
_ AS=0 1s2p 3P — 1s4d 3D

- o(E—e°)~In(E)/E
Optically(dipole)-forbidden

- AS=0 1s2s 1S —» 1s3s 1S
- o(E—>e)~ 1/E 1s2s 3S — 1s4d 3D

Spin-forbidden (EXCHANGE! Coulomb does not change spin...)

- AS#0

(E—yoo) ~ 1/E3 1s? 1S — 1s2p 3P
— OlE—>0c0) ™

1s2p 3P — 1s4d D

NIST
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Order of cross sections

. General order

— optically allowed > optically forbidden > spin forbidden

. OA: long-distance, similar to E1 radiative transitions

. The larger Al, the smaller cross section Q . ©

Li-like ions: 2s — 2p excitation

)
w
=1

x

A

o
1

Excitation cross sections for ions are NOT
zero at the threshold

2.0x10"°

- 2
Cross section (cm

1.0x10™°

0.0

1 10 100 1000 10000
Energy (eV)

NIST
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From cross sections to rates

Rate coefficients for an arbitrary energy distribution function

Emax 1/2 %
(va) = f v-o(E)- f(E)dE o (nnfT?’) j E-o(E) e E/TdE
AE

‘ AE
( )
For o(E) = A/E: vo) X

Often only threshold is important:

------ Effective collision strength:

o

N YR, ICTP/IAEA School, 2019
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van Regemorter-Seaton-Bethe formula

. Optically-allowed excitations

—

Gaunt factor

) 28”<Ry )29(X)f
— Oji =T1a ii
X_E/AEI'J' ! "V3\AE;)  x Y \ oscillator
strength
V3 6.51- 10~ In(X) I
X->o0: gX) = EIH(X) o(E) = BE[VDZ X fij lem™]
“Recommended” Gaunt factors:
Atoms: lons:
0.3 0.08 o 1 1 V3
g(ATL=0,X) =<033—7+?>11’1(X) g(ATl—O,X) = 1—2 07+; 06+§ID(X)
g(An # 0,X) = <2—\/§ — O'Xﬁ) In(X) g(An #0,X) = 0.2(X < 2), ;/—iln(X) for X =2

NIST
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Scaling of Excitations

* n-scaling
 An=1
e f~n, AE~n3, 6 ~n", 6 ~n*

f * Into high n
e f~n3, AE~n°, o ~n3
2 ] ]

 Z-scaling
* An=0
« f~Z1, AE~Z, 6 ~ Z3, <gV> ~ Z2

 An#0
o ~Z0 AE~Z2 o6 ~Z*, <ov>~Z>3
NIST
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Direct and Exchange (cont’d)
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lonization cross sections

Q % 1.5x107"° 4 —Cl
= | —2CI
® 2 1.0x10™ —cCl
A+e—->At+e+e /\
10 100 Energy (;s;))o 10000
Lotz formula:
Ry?1In(E/L,) n*InX
gi.(n, E) = 2.76 ma? = 2.76 Tat ———
lOTl( ) 0 In E 0 Z4 X

Same theoretical methods as for excitation: Born, Coulomb-Born, DW, CC, CCC, RMPS...

NIST
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3-Body Recombination

A+eoc AT +e+te

3-body rate coefficient a1 (T,) from ionization rate coefficient S, (T,):

3/2
1 g, (2mh? E,
T, == —1 S, (T,
aZ+1( e) Zgz+1 <meTe> exp [Te Z( e)

Rates from rate coefficients: n,S,(T,) but nzaz,(T,)

Likes high-n states; ()((Te)fvl/Tg/2

e

NIST
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Collisional Methods and Codes

Plane-wave Born (first order perturbation) a‘-\\\e
Coulomb-Born (better for HCI) ?e(’&\)(‘ods
Distorted-wave methods ((\e"\\o
. Close-coupling (CC) methods e
~ Convergent CC (CCC) e(w<‘°3
- R-matrix (with pseudostates, etc.) &0(\'9 065
— B-splines R-matrix ((\e‘\“

— Time-Dependent CC

. Relativistic versions are available

NIST
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Heavy-particle collisions

lonization cross sections

1.5x10" A 1.5x10"°

e+H
p+H

1.0x10™" 1.0x10"¢ 4

Cross section (cm’)
Cross section (sz)

5.0x10"" 4 5.0x10""

0.0 A e 0.0

Energy (eV) Velocity (at.un.)

In thermal plasmas electrons are always more important for excitations than heavy particles
Exception: closely-spaced levels (e.g., 2s and 2p in H-like ions)

Neutral beams: E ~ 100-500 keV = heavy particle collisions are of highest importance

Charge exchange H + A = H* + Alz1)*(n)

* Very large cross sections > 10°15 cm?; d(Z)~Z - 10715 ¢m?
* High excited states populated: n ~ Z%77
* Higher /values are preferentially populated but it depends on collision energy and n

NIST
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Neutral beam in ITER: H+\W¢%4*

d(Z)~Z 107 cm? = 6.4 - 10714 cm?

10-135"I ! ' L | ! ! L |

-  F T T T T T T == - 10-14 3 E
(9 S~ E
: <
10 . 510" 3
o E e E
5 5
(0] = -16
n = 10" F 4
210" | 3 3 '
: s %
= 0 17 [ i
S g 10
(O]
B 10 L 1 ; &
E -1

E E E’ 10" b 3
© —pCTMC ©
(@] - ~
S 107 L ---rCTMC i o 10°F
= 3 2
= P
g 5 10
= 107 - |

E. .1 . ] il 10.21

10 100 1000
Energy (keV/u) Principal quantum number, n

Classical Trajectory Monte Carlo (CTMC): two variations

D.R.Schultz and YR, to be published

NIST
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Resonances in excitation

/?//e/ %7 7

Direct excitation Intermediate states Intermediate Al states
(coupled channels!)

Matienal Institute of Standards and Tachnalogy YR, ICTP/IAEA School, 2019



Cross section (1 0" sz)

IP

NIST

Excitation-Autoionization

P e this work scan
Py Q this work absolute
[y TR 2 Falk etal 1981
"-'—"z T —— Lotz direct
e Griffin et al 1981
----- Bottcher et af 1983
—-—- Burke et al 1984
——Gorczyca ef al 1994
R-Matrix 14-state (CI)

.....

Energy (eV)

3p®3d Ti3*: van Zoest et al, 2004

-

Notional Institute of Stondards and Tachnology

-

4—0—0—\1/7

0.60

045}
o) R
= N
c o
2 i
S 030} it
@ I
: |
<
S Ju..

0.15¢ '

i
0.00 i :
0 1000 2000 3000

Incident Energy (eV)

3523p®3d194s2 Xe?4*: Pindzola et al, 2011

When EA is important:

* few electrons on the outermost shell

* Mid-Z multielectron ions

* ..but less important for higher Z (rad!)

EA in ionization cross sections is

not required for detailed modeling
with Al states!

YR, ICTP/IAEA School, 2019



Resonances in photoionization

100 = 1 o (Felll ;3d"9s['S)) — F I I I
- ! E
% | . e

3d>(°S)ns /S + hv
->3d> S

e
~
//

g
8

-
LA L

3d>(°S)ns /S + hv
-> 3d*4p(*P°)ns 7P°
-> 3d° ©S

‘\ o (Felll:3d8s['S])

f
f

\ J‘
/ l \“Li _}' /J
‘."'/ \ \/j

.001 llllllllxllllll’lllllllll'1[11'1Jllllll AnPradhan

1.7 1.75 18 1.85 1.9 1.95 2
PHOTON ENERGY (RYDBERGS)

PHOTOIONIZATION CROSS SECTION (MB)
8

-
o
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Selection rules

* Examples of Al states: 1s2s?, 1s?2pnl (high n)
 Same old rule: before = after

* A** 5> A* + ¢l
* Exact: P,=P;Al=0
e Approximate (LS coupling): AS=0, AL=0

e 2p%3P —> 1s + gp: parity/L violation (for LS)!

* BUT: W(2p2 3P, ) = a'¥(2p? 3P, ) + BY(2p% 1D,) + ...
* and W(2p? 3P, ) = a'V(2p? 3P, ) + B'Y(2p2 1S,) + ...
* YET: A,(2p?3P,) is much smaller...

YR, ICTP/IAEA School, 2019
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2p? autoionization probabilities

3p, 2.2(10) 3.7(12)
3p, 6.2(11) 1.1(14)
1p, 2.7(14) 2.3(14)
13, 1.4(13) 3.2(13)

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu



Radiative recombination

Continuum AE

Bound states

AZtD+ 4 o 5 AZF 4 py

3l

lon recombined

NIST
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DR step 1: dielectronic capture

°
Continuum AE
Bound states —
A(Z+1)+ +e 5 AZH*x
- —
Resonant process!
AE
_ =

NIST

Matienal Institute of Standards and Tachnalogy YR, ICTP/IAEA School, 2019



Dielectronic capture + autoionization
= no recombination

DC and Al are
direct and inverse

Continuum

Bound states ——

AC+D+ o o 5 pZ+xx 5 AZ+D+ 4 o

NIST
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DR step 2: radiative stabilization

Continuum
Bound states ————
Stabilizing transition:
ACZHD+ 4 o pZ+x |, AZ+* 4 gy Mostly x-rays

AVa%aVe

AE

NIST

Matienal Institute of Standards and Tachnalogy YR, ICTP/IAEA School, 2019



Dielectronic Recombination

At+e [i) A** i) At+e Example: An=0 for Fe XX 2s%2p3
| s 25°2p> 4S,,, + € = 2s2p*(*P; ,)nl
. 25°2p3 *S;,, + € — 252p*(*P; ;,)nl
A +hv 25°2p3 *S;,, + € — 252p*(*P; ;,)nl
. fj;lperimentl 150 — 2sép4(4pw)'l-n '(al) _ n=7/
‘ 100 reonin,
20 52 | —

R S R

19 {10 O T O A A O O AR izszp“(‘Pﬂm)nl series
oo

n=8 9 10... 2sRp*(*P,,)nl
| | 1 | b1 T T EETHINGm | series =

[y
o

. s2p
I L 1 DTN | series
o

Rate coefficient (107'° em? s7)

0 20 40 60 80 100 120 Savin et al, 2004
Center of Mass Energy (eV)

NIST
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Examples of dielectronic
recombination & resonances

Dielectronic satellites are
important for plasma diagnostics

He* + e e
(e.g., He- and Li-like ions)
log, @ g
Sl < 3000
- w
o o nxy
S 2000] g
o
-la = O c;’?l
IS S
st 2 1000 |
o &
-6}
O __,"—,",A"“""'"'" IIII _‘ IIIIII ,-‘ e ‘- IIIIIIII _..
3.94 395 396 397 398 399 4.00

Wavelength (A)

Fre 1 —He" 4 ¢ recombination coeficients o (cm? sec™)

Ar at NSTX, Bitter et al (2004)
A. Burgess, ApJ 139, 776 (1964)
BUT: DR for high-Z multi-electron ions

This work solved the ionization balance is barely known!
problem for solar corona

NIST
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Connection between DC and EXC

/%

> \\\\




Connection between DC and EXC

%//// 77777 -

7
‘ T I T T I I T T ‘
6e-21
_|_
+
~ L +
G Se-21—
8
S
= 4e-21-
& N
_ 2 sepq  DCcan be treated as
g I . .
& ,o0;  and DC cross sections can be
e . :
AE 1e-21
| | | | ‘

Relative energy, X=E/AE

| -




Inner-shell dielectronic
resonances in HCI
K2I8M¥k + e - K2L”M*nin'l'

3500
9.5 2354
9.0 i‘ L 1583
1 - 1065
g 8.5 - 716.3
R
‘;; 8.0 L 481.8
%D L 324.0
5 | ~ 40+
754 - 217.9
g
> . L 146.6
M 704
L 98.60

o
13)

o
o
[

6 7 8 9 10 11 12 13 14 15
Photon energy (keV)

66.32
44.60
30.00

Matienal Institute of Standards and Tachnalogy YR, ICTP/IAEA School, 2019



Experiment Theory

3500 0.0079

9.5 BREA 9.5 0.0053
9.0 - 1583 9.0 L 0.0036
- 1065 - 0.0024
/>-\ 8.5 - 716.3 § 8.5 - 0.0016
v <
~ - 481.8 Nt — 0.0011
o>fi 8.0 o>fi 8.0
S ; - 324.0 b5 - 7.4E-04
S ‘ g 7 5
7.5 - 217.9 ! - 5.0E-04
g "] g
Q - 146.6 O - 3.4E-04
M 7.0 1 M 7.0
] - 98.60 - 2 3E-04
6.5 - 66.32 6.5 1.5E-04
1 44 .60 1.0E-04
6.0 6.0
30.00 7.0E-05
6 7 8 9 10 M 12 13 14 15 6 7 8 9 10 1 12 13 14 15
Photon energy (keV) Photon energy (keV)

1522522p63523pM3dk + e — 1522522p°3s23pm3dk+in|
1522522p®3s523pM3dk + e — 1522522p°3s23p™3dk4Inl’
1522522p®3s523pM3dX + e — 152252p°3s23p™3d<tinl

NIST
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He-like lines and satellites

4 5000 T T L L T . L
Fit ——
40000 Exp —=—

—r—
=

35000

30000

25000

20000

Intensity, a.u.

15000

10000

1s2Inl’, n>2

5000

3.95 3.96 3.97 3.98 3.99 4
Wavelength, A

O.Marchuk et al, J Phys B 40, 4403
(2007)

NIST
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Energy levels in He-like Ar

e Ground state: 1s2 1S0O

* Two subsystems of terms
 Singlets 1snl 1L, J=I| (example 1s3d 1D?2)
e Triplets 1snl 3L, J=I-1,l,I+1 (example 1s2p 3P0,1,2)

e Radiative transitions within each subsystem are
strong, between systems depend on Z

NIST
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He-like Ar Levels and Lines

1s2p 1P1 152p 3p
2
1s2p 3P,
1s2p 3P,
1s2s 1S, 1525 35,
Y
N
W Z >
o <
(@\]
o % Line He® Ari6* Fe23* Kr34+
W 1.8(9) 1.1(14) 4.6(14) 1.5(15)
Y 1.8(2) 1.8(12) 4.4(13) 3.9(14)
121
5" %0 X 3.3(-1) 3.1(8)  6.5(9) 9.3(10)
z 1.3(-4) 4.8(6)  2.1(8)  5.8(9)
NIST
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Z-scaling of A’s

* W[E1]: A(1s? 1S, — 1s2p 1P,) oc 2%
* Y[E1]: A(1s2 S, — 1s2p 3P,)

* oc 719 for low Z
» oc 78 for large Z
» oc 74 for very large Z

* X[M2]: A(152 1S, — 152p 3P,) oc Z8
* Z[M1]: A(1s%2 1S, — 1s2s 3S,) oc Z1°

Matienal Institute of Standards and Tachnalogy YR, ICTP/IAEA School, 2019



1s2Inl satellites

T = B V1V
* 1s2s%:°S,,
* 1s2s2p:
* 152s2p(*P) ?Py s, 3/,
15000 * 15252p(°P) *Py/5 3/2; *P1/23/2.5/2
10000 | ] o 1s2p?
50@0.’]' 1s2Inl’, n>2 | | ] ° 152p2(1D) 2D3/2’5/2
o * 152p*(°P) *Py1s23/05 *P1j23/2,502
* 1s2p*(S) S,
1s24+e & 152121’ + ds2lnl
* Closer and closer to W
* Only 15213l can be reliably resolved
e Contribute to W line profile

35000

30000

25000

20000

Intensity, a.u.

YR, ICTP/IAEA School, 2019
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