

Atomic structure, radiation, collisions: what's in it for plasmas?..

Yuri Ralchenko

National Institute of Standards and Technology

Gaithersburg, MD 20899, USA

The story of a photon

NIST National Institute of Standards and Technology

Questions to ask

- Why was the photon created?
- Who created the photon?
- What was the probability for the photon to be created?
- How does the plasma environment affect photon creation?
- How did the photon propagate in the plasma?
- What has changed when the photon was recorded?

•

Why is atomic structure important for plasmas?

Most of the relevant physics is inside this matrix element

$$\langle \Psi_f(a',b',c',\ldots) | \hat{0} | \Psi_i(a,b,c,\ldots) \rangle$$

final state

interaction operator

initial state

- Wavelengths
- Energies
- Transition probabilities (radiative and non-radiative)
- Collisional cross sections

• ...

A Few Textbooks on APP

- H.R. Griem
 - Plasma Spectroscopy (1964)
 - Principles of Plasma Spectroscopy (1997)
- R.D. Cowan
 - Theory of Atomic Structure and Spectra (1981)
- V.P. Shevelko and L.A. Vainshtein
 - Atomic Physics for Hot Plasmas (1993)
- D. Salzmann
 - Atomic Physics in Hot Plasmas (1998)

- T. Fujimoto
 - Plasma Spectroscopy (2004)
- H.-J. Kunze
 - Introduction to Plasma Spectroscopy (2009)
- J. Bauche, C. Bauche-Arnoult, O. Peyrusse
 - Atomic Properties in Hot Plasmas (2015)
- Modern Methods in Collisional-Radiative Modeling of Plasmas (2016)
 - HKC, CJF, YR,...

Units

- Energy
 - 1 Ry = 13.61 eV = 109 737 cm⁻¹ (ionization energy of H)
 - 1 eV = 8065.5447 cm⁻¹
- Length
 - $a_0 = 5.29 \cdot 10^{-9}$ cm = 0.529 Å (radius of H atom)
- Area (cross section)
 - $\pi a_0^2 = 8.8 \cdot 10^{-17} \text{ cm}^2$ (area of H atom)

• New SI (redefinition of base units): May 20 2019

http://physics.nist.gov/cuu/Units/

What kind of atomic data is of importance for spectroscopic diagnostics of plasmas?

- Wavelengths of spectral lines
- Line/level identifications
- Level energies
- Transition probabilities (radiative and non-radiative processes)
- Collisional cross sections and rate coefficients
- Spectral line shapes and widths

16-electron ion (S-like): how to describe its atomic structure?..

Hydrogen and H-like ions

Hydrogen atom

NIST National Institute of Standards and Technology

Each atomic state (wavefunction) is characterized by a set of quantum numbers

- Generally speaking, only two are exact for an isolated atom:
 - Total angular momentum J
 - Parity = $(-1)^{\sum_{i} l_i}$ (but: *weak interactions*!)
- They are the consequences of conservation laws
 - Noether theorem (1915)
- Everything else (total L, total S,...) is not exact!

Complex atoms (non-relativistic)

We know all important interactions:

$$H = H_{kin} + H_{elec-nucl} + H_{elec-elec} + H_{s-o} + \dots$$
$$= -\sum_{i} \frac{1}{2} \nabla_{i}^{2} - \sum_{i} \frac{Z}{r_{i}} + \sum_{i>j} \frac{1}{r_{ij}} + \sum_{i} \frac{1}{2} \xi_{i}(r_{i})(\boldsymbol{l}_{i} \cdot \boldsymbol{s}_{i}) + \dots$$

$$H\Psi(\boldsymbol{r}_1,\boldsymbol{r}_2,\dots)=E\Psi(\boldsymbol{r}_1,\boldsymbol{r}_2,\dots)$$

The Schrödinger equation for multi-electron atoms cannot be solved exactly...

Standard procedure

• Use central-field approximation to approximate the effects of the Coulomb repulsion among the electrons:

•
$$H \approx H_0 = \sum_i^N \left(-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} + V(r_i) \right)$$

- Properly choose the potential V(r)
- Find configuration state functions $\Phi(\gamma_j LS)$ (accounting also for antisymmetry): n,l
- Assume that the atomic state function is a linear combination of CSFs: $\Psi(\gamma LS) = \sum_{j}^{M} c_{j} \Phi(\gamma_{j} LS)$
- Solve Schrodinger equation for mixing coefficients:

•
$$(\widehat{H} - E\widehat{I})\widehat{c} = 0, H_{ij} = \langle \Phi(\gamma_i LS) | H | \Phi(\gamma_j LS) \rangle$$

Include other effects (perturbation theory)...and live happily!

NIST National Institute of Standards and Technolog

Relativistic atomic structure: heavy and not so heavy ions

$$H_{DC} = \sum_{i} (c \boldsymbol{\alpha}_{i} \cdot \boldsymbol{p}_{i} + V_{nuc}(r_{i}) + \beta_{i}c^{2}) + \sum_{i>j} \frac{1}{r_{ij}}$$

electron momentum operator

Dirac-Coulomb Hamiltonian

 α, β 4x4 Dirac matrices

 $p \equiv -i \nabla$

 $V_{nuc}(r)$ extended nuclear charge distribution

Transverse photons (magnetic interactions and retardation effects):

$$H_{TP} = -\sum_{j>i} \left[\frac{\alpha_i \cdot \alpha_j \cos(\omega_{ij} r_{ij}/c)}{r_{ij}} + (\boldsymbol{\alpha}_i \cdot \boldsymbol{\nabla}_i) (\boldsymbol{\alpha}_j \cdot \boldsymbol{\nabla}_j) \frac{\cos(\omega_{ij} r_{ij}/c) - 1}{\omega_{ij}^2 r_{ij}/c^2} \right]$$

QED effects: self energy (SE), vacuum polarization (VP)

$$H_{DCB+QED} = H_{DC} + H_{TP} + H_{SE} + H_{VP}$$

Relativistic notations

$$l_{\pm} \rightarrow j = l \pm 1/2$$

	<i>s</i> _{1/2}	р _{1/2}	р _{3/2}	d _{3/2}	d _{5/2}	f _{5/2}	f _{7/2}	
	5	p_	<i>p</i> ₊	d_	d,	f_{-}	f_{\star}	
1	0	1	1	2	2	3	3	
j	1/2	1/2	3/2	3/2	5/2	5/2	7/2	

Energy structure of an ion

Electrons are grouped into shells *nl* (K *n*=1, L *n*=2, M *n*=3,...) producing **configurations (or even superconfigurations)**

NIST National Institute of Standards and Technology

Z-scaling of electron energies

$$\begin{split} H &= \sum_{i} \left(\frac{p_i^2}{2} - \frac{Z}{r_i} \right) + \sum_{i>j} \frac{1}{r_{ij}} \\ \text{New variables } \rho_i &= Zr_i, \tilde{p_i} = p_i/Z \text{ lead to:} \\ H &= Z^2 \sum_{i} \left(\frac{\tilde{p}_i^2}{2} - \frac{1}{\rho_i} \right) + Z \sum_{i>j} \frac{1}{\rho_{ij}} = Z^2 (H_0 + Z^{-1}V) \\ \frac{H\psi}{2} &= E\psi \implies (H_0 + Z^{-1}V)\psi = (Z^{-2}E)\psi \\ E &= Z^2 (E_0 + Z^{-1}E_1 + Z^{-2}E_2 + \cdots) \end{split}$$

 $E_0 = -\frac{1}{n^2}$

Therefore, for high Z the energy structure looks more and more H-like!

Mg-like Al II: 3l3l'

NIST National Institute of Standards and Technology

Mg-like Sr XXVII: 3l3l'

National Institute of Standards and Technology

Importance of Z_c

Spectroscopic charge: **Z**_c= **ion charge + 1** (H I, Ar XV...)

This is the charge that is seen by the outermost (valence) electron

Isoelectronic sequences: ions with the same number of electrons

• Li I, Be II, B III,...

It is often useful to consider variation of atomic parameters along isoelectronic sequences

Spin-orbit interaction

Hydrogenic ion:

$$T_{nl} = \frac{Ry \, \alpha^2 Z^4}{n^3 \, l \, (l+1/2) \, (l+1)}$$

Semi-theoretical Lande formula:

$$\zeta_{nl} = \frac{Ry \, \alpha^2 \, Z_c^2 \tilde{Z}^2}{n^{*3} \, l \, (l+1/2) \, (l+1)}$$

n*: effective n
$$I = \frac{Ry Z_c^2}{n^{*2}}$$

$$\tilde{Z}$$
: effective nuclear charge (for penetrating orbits) = **Z-n** for *np* orbitals

$$H = -\sum_{i} \frac{1}{2} \nabla_{i}^{2} - \sum_{i} \frac{Z}{r_{i}} + \sum_{i>j} \frac{1}{r_{ij}} + \sum_{i} \frac{1}{2} \xi_{i}(r_{i}) (\boldsymbol{l}_{i} \cdot \boldsymbol{s}_{i}) + \dots$$

Types of coupling

- LS coupling: electron-electron » spin-orbit
 - light elements $\vec{L} = \vec{l}_1 + \vec{l}_2 + ..., \quad \vec{S} = \vec{s}_1 + \vec{s}_2 + ..., \quad \vec{J} = \vec{L} + \vec{S}$
- jj coupling: spin-orbit » electron-electron
 - heavy elements $\vec{j_1} = \vec{l_1} + \vec{s_1}, \ \vec{j_2} = \vec{l_2} + \vec{s_2}, \ \dots \ \vec{J} = \vec{j_1} + \vec{j_2} + \dots$
 - 2s2p: (2s_{1/2},2p_{1/2}) or (2s,2p-)
 - $3d^5$: $((3d^3)_{5/2}, (3d^2)_2)_{3/2}$
- *Intermediate coupling*: neither is overwhelmingly strong
- Other types of couplings exist

Configuration sp: LS coupling (LSJ)

NIST National Institute of Standards and Technology

Configuration sp: jj coupling

NIST National Institute of Standards and Technology

From LS to jj: 1s2p in He-like ions

NIST National Institute of Standards and Technology

Spin-orbit interaction does depend on nuclear charge!

NIST National Institute of Standards and Technology

Na-like doublet: from neutral to HCI

Fraunhofer absorption lines in the solar spectrum

D2: $3s_{1/2} - 3p_{3/2}$

NIST National Institute of Standards and Technology

Na-like doublet: from neutral to HCI

NIST National Institute of Standards and Technology

Little lons With a Big Charge

NIST National Institute of Standards and Technology Sodium-like Tungsten (W⁶³⁺)

YR, ICTP/IAEA School, 2019

11 electrons

D-doublet in Na-like W, Hf, Ta, and Au

J.D. Gillaspy et al, *Phys. Rev. A* **80**, 010501 (2009)

YR, ICTP/IAEA School, 2019

State mixing in intermediate coupling

 $|\Psi(a, b, c, \dots)\rangle$ $= \alpha \cdot \Psi_1(a, b, c, \dots) + \beta \cdot \Psi_2(a, b, c, \dots) + \gamma \cdot \Psi_3(a, b, c, \dots) + \dots$

expansion coefficients

He-like Na⁹⁺: $1s2p {}^{3}P_{1} = 0.999 {}^{3}P + 0.032 {}^{1}P$ He-like Fe²⁴⁺: $1s2p {}^{3}P_{1} = 0.960 {}^{3}P + 0.281 {}^{1}P$ He-like Mo⁴⁰⁺: $1s2p {}^{3}P_{1} = 0.874 {}^{3}P + 0.486 {}^{1}P$

Very, VERY important for radiative transitions...

Hund's rules (equivalent electrons, LS)

- Largest *S* has the lowest energy
- Largest *L* with the same *S* has the lowest energy
- For atoms with less-than half-filled shells, **lowest** J has lowest energy

01

Configuration	Term	J	Level (cm ⁻¹)
2s ² 2p ⁴	ЗP	2	0.000
		1	158.265
		0	226.977
2s ² 2p ⁴	¹ D	2	15 867.862
2s²2p4	1S	0	33 792.583

Configuration	Term	J	Level (cm ⁻¹)	Reference
2 <i>s</i> ² 2 <i>p</i> ²	³Р	0	0.00	L7288
		1 2	16.40 43.40	
2s ² 2p ²	¹ D	2	10 192.63	
2 <i>s</i> ² 2 <i>p</i> ²	¹ S	0	21 648.01	
2s2p ³	⁵S°	2	33 735.20	
2 <i>s</i> ²2p3s	³ P°	0	60 333.43 60 352 63	
		2	60 393.14	
2s²2p3s	¹ P°	1	61 981.82	
2s2p ³	³ D°	3 1	64 086.92	
		2	64 090.95	

National Institute of Standards and Technology

CI

Superconfigurations

Motivation: for very complex atoms (ions) not only the **number of levels** is overwhelmingly large, but also the **number of configurations**

Example: $1s^22s^22p^53s$ $1s^22s^22p^53p$ $1s^22s^22p^53d$ $1s^22s^2p^53d$ $1s^22s^2p^63s$ $1s^22s^2p^63p$ $1s^22s^2p^63d$ $1s^22s^2p^63d$ BUT: $(1s)^2(2s^2p)^7(3s^3p^3d^4s^4p^4d^4f)^1$

Instead of producing millions or billions of lines, SCs are used to calculate Super Transition Arrays

Statistical methods

See J. Bauche et al's book (2015)

Superconfigurations vs. detailed level accounting

Ga: photoabsorption cross section Iglesias et al (1995)

National Institute of Standards and Technology

YR, ICTP/IAEA School, 2019

lonization potentials

- IPs are directly connected with ionization distributions in plasmas
- Most often are determined from Rydberg series

NIST National Institute of Standards and Technology

Ionization potentials of W ions

NIST National Institute of Standards and Technology

Ionization potential: constant?..

- IP is a function of plasma conditions
- High-lying states are no longer bound due to interactions with neighboring atoms, ions, and electrons
- Orbit radius in H I: where is n=300,000?

Isolated atom

NIST National Institute of Standards and Technology

NIST National Institute of Standards and Technology

Atomic Structure Methods and Codes

- Coulomb approximation (Bates-Damgaard)
- Thomas-Fermi (SUPERSTRUCTURE, AUTOSTRUCTURE)
- Single-configuration Hartree-Fock (self-consistent field)
 - Cowan's code (LANL)
- Model potential (including relativistic)
 - HULLAC, FAC
- Multiconfiguration non-relativistic HF (http://nlte.nist.gov/MCHF)
- Multiconfiguration Dirac-(Hartree)-Fock (MCDF or MCDHF)
 - GRASP2K (http://nlte.nist.gov/MCHF)
 - Desclaux's code
- Various perturbation theory methods (MBPT, RMBPT)
- B-splines

http://plasma-gate.weizmann.ac.il/directories/free-software/

Atomic Structure & Spectra Databases

- (Reasonably) Extensive list
 - http://plasma-gate.weizmann.ac.il/directories/databases/
- Evaluated and recommended data
 - NIST Atomic Spectra Database http://physics.nist.gov/asd
 - Level energies, ionization potentials, spectral lines, transition probabilities
- Other data collections
 - VALD (Sweden)
 - SPECTR-W3 (Russia)
 - CAMDB (China)
 - CHIANTI (USA/UK/...)
 - Kurucz databases (USA)
 - GENIE (IAEA)

•

Now to radiative processes...

Three major sources of photons

- Free-free transitions (bremsstrahlung)
 - $A^{z+} + e \rightarrow A^{z+} + e + hv$
- Free-bound transitions (radiative recombination)
 - $A^{z+} + e \rightarrow A^{(z-1)+} + hv$
- Bound-bound transitions
 - $A_j^{z+} \rightarrow A_i^{z+} + hv$

.Bremsstrahlung (free-free)

 Calculation is straightforward for Maxwellian electrons off bare nuclei of Z:

$$\varepsilon_{\lambda}^{ff}(\lambda) = \frac{32\sqrt{\pi}c(\alpha a_0)^3 Ry}{3\sqrt{3}} N_Z N_e Z^2 \left(\frac{Ry}{T_e}\right)^{1/2} \frac{1}{\lambda^2} e^{-\frac{hc}{\lambda T_e}} G^{ff}(T_e,\lambda) \quad \mathbf{E}_{\mathbf{x}}$$

- Total power loss $\varepsilon^{ff} = 4.51 \times 10^{-45} Z^2 \left(\frac{T_e}{Ry}\right)^{1/2} N_z N_e \left[\frac{W}{sr \cdot cm^3}\right]$
- Multicomponent plasma:

$$\varepsilon_{\lambda}^{ff}(\lambda) = z_{eff} \varepsilon_{\lambda}^{ff}(\lambda) [H]; \quad z_{eff} = \frac{1}{N_e} \sum_{i,z} z_i^2 N_z^i = \frac{\sum_{i,z} z_i^2 N_z^i}{\sum_{i,z} z_i N_z^i}$$

Dominant at longer wavelengths

Maximum emission at $\lambda_{\text{max}} = \frac{620 \text{ nm}}{T_e[eV]}$

hvit it i

Bremsstrahlung (cont'd)

$$\varepsilon(\lambda)d\lambda = \varepsilon(\omega)d\omega \qquad \omega = \frac{2\pi c}{\lambda}$$

$$\varepsilon_{\omega}^{ff}(\omega) = \frac{64c(\alpha a_0)^3 Ry}{3c\sqrt{3\pi}} N_Z N_e Z^2 \left(\frac{Ry}{T_e}\right)^{1/2} e^{-\frac{\hbar\omega}{T_e}} G^{ff}(T_e,\omega)$$

$$\varepsilon_{\omega}^{ff}(E) \approx A e^{-\frac{E}{T_e}}$$

Spectral Line Intensity

BB Radiative transitions

 Classical rate of loss of energy: dE/dt ~ |a|², and decay rate ~ |r|² for harmonic oscillator

• Quantum treatment:

$$\left\langle \Psi_{f} \middle| \vec{\nabla} \cdot \vec{a} \; e^{i \vec{k} \vec{r}} \middle| \Psi_{i} \right\rangle$$

- $e^{ikr} = 1 + ikr + ... \approx 1$ (electric dipole or E1 = allowed)
- Velocity form:
- Length form:

 $ig egin{aligned} & \langle \Psi_f ig
abla & \Psi_i ig
angle \ & \langle \Psi_f ig | \, r ig | \Psi_i ig
angle \end{aligned}$

must be equal for an exact wavefunction (good test!)

QUESTION:

Why would a STATIONARY excited state of the atomic Hamiltonian not live forever but rather experience a radiative decay to a lower state?..

S, f, and A (1)

- Line strength
 - Symmetric w/r to initial-final

$$S_{ji} = \left| \left\langle i \| r \| j \right\rangle \right|^2 = S_{ij}$$

- $g_j f_{ij} = g_i f_{ji}$ ($g_j = 2J_j + 1$); dimensionless
- Typical values for strong lines: ~ 0.1-1

$$f_{ij} = \frac{1}{3g_i} \frac{\Delta E}{Ry} S$$

S, f, and A (2)

• Transition probability (or Einstein coefficient)

$$A_{ji} = 4.3 \cdot 10^7 \, \frac{g_i}{g_j} \left(\Delta E[eV] \right)^2 f_{ij}[s^{-1}]$$

4.7e8 (1-2)

5.6e7 (1-3)

1.8e9 (1s²-1s2p)

5.7e8 (1s²-1s3p)

• Typical values for neutrals: ~10⁸-10⁹ s⁻¹

$$A_{ji} = \frac{2hv^3}{c^2} B_{ji}, g_j B_{ji} = g_i B_{ij}$$

HI:
HeI:
Lifetime: $\tau_j = 1/\Sigma_i A_{ji}$

Selection rules and Z-scaling

Fundamental law: parity and J do not change

Before:
$$P_j$$
 \vec{J}_j After: $P_i \cdot P_{ph}$ $\vec{J}_i + \vec{J}_{ph}$

$$P_{ph} = -1$$

$$J_{ph}(E1) = 1 \implies F_{j} = -P_{i}$$

$$|\Delta J| \le 1, 0 \not\rightarrow 0 (J_{j}+J_{i}\ge 1)$$

Approximate selection rules (for LS coupling): $\Delta S = 0, |\Delta L| \le 1, 0 \nrightarrow 0$

Intercombination transitions: $\Delta S \neq 0$ 2s² ¹S₀ - 2s2p ³P₁

Selection rules and Z-scaling

- •∆n ≠ 0
 - r \propto Z⁻¹ \Rightarrow S \propto Z⁻²
 - $\Delta E \propto Z^2 \Rightarrow f \propto Z^0$
 - •A \propto Z⁴

$$S_{ji} = \left| \left\langle i \| r \| j \right\rangle \right|^2 = S_{ij}$$

• $\Delta n = 0$ • $r \propto Z^{-1} \Rightarrow S \propto Z^{-2}$ • $\Delta E \propto Z \Rightarrow f \propto Z^{-1}$ • $\Delta E \propto Z \Rightarrow f \propto Z^{-1}$

Some useful info

- "Left" is stronger than "right"
 - $f(\Delta l = -1) > f(\Delta l = +1)$
 - He l
 - $f(1s2p {}^{1}P_{1} 1s3s {}^{1}S_{0}) = 0.049$
 - $f(1s2p {}^{1}P_{1} 1s3d {}^{1}D_{2}) = 0.71$

- Level grouping
 - Average over initial states
 - Sum over final states
 - Example: from levels to terms
 - Any physical parameter

Principal quantum number n

• n-dependence for $f: f(n_1 \to n_2) \approx \frac{32}{3\pi\sqrt{3}} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)^{-5} \frac{1}{n_1^5} \frac{1}{n_2^5}$

$$f(\Delta n = 1) \approx \frac{4}{3\pi\sqrt{3}} n \approx 0.245 n$$

$$f(n_2 >> n_1) \propto \frac{1}{n_2^3}$$

n-dependence for A

$$A(n_2 >> n_1) \propto \frac{1}{n_2^3}$$

• Total radiative rate from a specific n

$$A_Z(n) \approx 1.6 \times 10^{10} \frac{Z^4}{n^{9/2}}$$

Mixing effects

He-like Na⁹⁺: He-like Fe²⁴⁺: He-like Mo⁴⁰⁺:

 $1s2p {}^{3}P_{1} = 0.999 {}^{3}P + 0.032 {}^{1}P$ $1s2p {}^{3}P_{1} = 0.960 {}^{3}P + 0.281 {}^{1}P$ $1s2p {}^{3}P_{1} = 0.874 {}^{3}P + 0.486 {}^{1}P$

Z	1s ² ¹ S ₀ - 1s2p ¹ P ₁	1s ² ¹ S ₀ - 1s2p ³ P ₁
2	1.8(9)	1.8(2)
11	1.3(13)	1.4(10)
26	4.6(14)	4.4(13)
42	2.6(15)	9.0(14)
54	6.7(15)	3.0(15)
74	2.2(16)	1.2(16)

Quick estimates of A

$$A_{ji} = 4.3 \cdot 10^7 \, \frac{g_i}{g_j} \left(\Delta E[eV] \right)^2 f_{ij}[s^{-1}]$$

Calculate
$$A(Fe^{24+} 1s^2 {}^{1}S_0 - 1s2p {}^{1}P_1)$$

if $f(O^{6+} 1s^2 {}^{1}S_0 - 1s2p {}^{1}P_1) = 0.7$

NIST ASD: 4.6·10¹⁴ s⁻¹ (<10%)

Forbidden transitions (high multipoles)

- QED: En, Mn (n=1, 2,...)
- E1/M1 dipole, E2/M2 quadrupole, E3/M3 octupole,...
- Selection rules
 - P_i·P_i
 - +1 for M1, E2, M3,...
 - -1 for E1, M2, E3,...
 - $J_{ph}(En/Mn) = n$
- M3 and E3 were measured!

- Magnetic dipole (M1)
 - Stronger within the same configuration/term
 - $\mathbf{A} \propto \mathbf{Z}^6$ or stronger
 - Same parity, $|\Delta J| \le 1$, $J_j + J_i \ge 1$
- Electric quadrupole (E2)
 - Stronger between configurations/terms
 - $\mathbf{A} \propto \mathbf{Z}^6$ or stronger
 - Same parity, $|\Delta J| \le 2$, $J_j+J_i\ge 2$

Generally weak ...

Aurora borealis

Forbidden transitions: auroras

Wavelength	Transition	A(s⁻¹)
2958	¹ S ₀ - ³ P ₂	E2: 2.42(-4)
2972	¹ S ₀ - ³ P ₁	M1: 7.54(-2)
5577	¹ S ₀ - ¹ D ₂	E2: 1.26(+0)
6300	¹ D ₂ - ³ P ₂	M1: 5.63(-3)
6300	¹ D ₂ - ³ P ₂	E2: 2.11(-5)
6364	¹ D ₂ - ³ P ₁	M1: 1.82(-3)
6364	¹ D ₂ - ³ P ₁	E2: 3.39(-6)
6392	¹ D ₂ - ³ P ₀	E2: 8.60(-7)

Total angular momentum J

Scaling in Ne-like ions

NIST National Institute of Standards and Technology

Forbidden transitions: highly-charged W

A ~ 10⁴-10⁶ s⁻¹

NIST National Institute of Standards and Technology

He-like Ar Levels and Lines

NIST National Institute of Standards and Technology

Z-scaling of A's

- W[E1]: A(1s² ${}^{1}S_{0} 1s2p {}^{1}P_{1}) \propto Z^{4}$
 - $\Delta J = 1, P_1 * P_2 = -1, \Delta S = 0$
- **Y**[**E1**]: A(1s2 ¹S₀ 1s2p ³P₁)
 - $\Delta J = 1$, $P_1 * P_2 = -1$, $\Delta S = 1$
 - $\propto Z^{10}$ for low Z
 - $\propto Z^8$ for large Z
 - $\propto Z^4$ for very large Z
- X[M2]: A(1s² ${}^{1}S_{0} 1s2p {}^{3}P_{2}) \propto Z^{8}$
 - $\Delta J = 2$, $P_1 * P_2 = -1$, $\Delta S = 1$
- Z[M1]: A(1s² ${}^{1}S_{0} 1s2s {}^{3}S_{1}) \propto Z^{10}$ • $\Delta J = 1, P_{1}*P_{2} = -1, \Delta S = 1$

NIST National Institute of Standards and Technology

Why are the forbidden lines sensitive to density?

Radiative Recombination

 $A^{Z+} + e \rightarrow A^{(Z-1)} + hv$ hv = E + I (inverse of photoionization)

Semiclassical Kramers cross section:

Quantummechanical cross section:

$$\sigma_{Kr}(E) = \frac{64\alpha}{3\sqrt{3}} \frac{Z^4}{n^5} \left(\frac{Ry}{E+I}\right)^3 \pi a_0^2$$
$$\sigma_{ph}(E) = \sigma_{Kr}(E) \cdot G_n^{bf}(E)$$

Cross section Z-scaling:

NIST National Institute of Standards and Technology

FF+BF at Alcator C-mod: 1 eV, H

Collisions in plasmas

- More than one particle: collisions!
- Elastic, inelastic

Number of collisions per unit time:

projectile_density[1/cm³] *
velocity[cm/s] *
effective_area[cm²]

Equilibrium plasma: $T_e = T_A$

$$\frac{v_e}{v_A} = \sqrt{\frac{M}{m_e}}$$

Electrons are much faster!

[1/s]

Collision (excitation)

Continuum

Main **binary** quantity: cross section $\sigma(E)$ [cm²]

Effective area for a particular process

$$\sigma(E) = \int |f(E,\theta,\phi)|^2 d\Omega$$

f is the scattering amplitude

Process rate in plasmas:

$$R[s^{-1}] = N\langle \sigma v \rangle \equiv N \int_{E_{min}}^{E_{max}} \sigma(E) \cdot v \cdot f(E) dE$$

rate coefficient Physics is here!

Basic Parameters

- Cross sections are *probabilities*
 - Classically: $\sigma(\Delta E, E) = \int_{0}^{\infty} P(\Delta E, E, \rho) \cdot 2\pi\rho d\rho$
- Typical values for atomic cross sections
 - $-a_0 \sim 5.10^{-9} \text{ cm} \Rightarrow \pi a_0^2 \sim 10^{-16} \text{ cm}^2$
- Collision strength Ω (dimensionless, on the order of unity):

$$\sigma_{ij}(E) = \pi a_0^2 \frac{Ry}{g_j E} \Omega_{ij}(E)$$

- Ratio of cross section to the de Broglie wavelength squared
- Symmetric w/r to initial and final states

NIST National Institute of Standards and Technology ρ

Direct and inverse

 Quantum mechanics tells us that characteristics of direct and inverse processes are related

 ΔE is the excitation threshold

Milne formula for photoionization/photorecombination: $\hbar\omega = E + I_Z$

$$g_z \sigma_{ph}(\hbar\omega) = \frac{2mc^2}{\hbar^2 \omega^2} g_{z+1} \sigma_{rr}(E)$$

 $A + hv \leftrightarrow A^+ + e$

Types of transitions for excitation

- Optically(dipole)-allowed
 - P·P' = -1 (different parity)
 - $|\Delta l| = 1$
 - $-\Delta S = 0$
 - σ (E→∞) ~ ln(E)/E
- Optically(dipole)-forbidden
 - $-\Delta S = 0$
 - σ(E→∞) ~ 1/E
- Spin-forbidden (EXCHANGE! Coulomb does not change spin...)
 - $-\Delta S \neq 0$
 - − σ(E→∞) ~ 1/E³

Examples in He I:

 $1s^2 {}^1S \rightarrow 1s2p {}^1P$ $1s2p {}^3P \rightarrow 1s4d {}^3D$

1s2s ${}^{1}S \rightarrow 1s3s {}^{1}S$ 1s2s ${}^{3}S \rightarrow 1s4d {}^{3}D$

 $1s^2 {}^1S \rightarrow 1s2p {}^3P$ $1s2p {}^3P \rightarrow 1s4d {}^1D$

Order of cross sections

- General order
 - optically allowed > optically forbidden > spin forbidden
- OA: long-distance, similar to E1 radiative transitions
- The larger Δl , the smaller cross section

From cross sections to rates

Rate coefficients for an arbitrary energy distribution function

NIST National Institute of Standards and Technology
van Regemorter-Seaton-Bethe formula

"Recommended" Gaunt factors:

Atoms:

$$g(\Delta n = 0, X) = \left(0.33 - \frac{0.3}{X} + \frac{0.08}{X^2}\right)\ln(X)$$
$$g(\Delta n \neq 0, X) = \left(\frac{\sqrt{3}}{2\pi} - \frac{0.18}{X}\right)\ln(X)$$

lons:

$$g(\Delta n = 0, X) = \left(1 - \frac{1}{Z}\right) \left(0.7 + \frac{1}{n}\right) \left[0.6 + \frac{\sqrt{3}}{2\pi} \ln(X)\right]$$
$$g(\Delta n \neq 0, X) = 0.2(X < 2), \ \frac{\sqrt{3}}{2\pi} \ln(X) \ for \ X \ge 2$$

NIST National Institute of Standards and Technology

Scaling of Excitations

- n-scaling
 - Δn=1
 - $f \sim n$, $\Delta E \sim n^{-3}$, $\sigma \sim n^7$, $\sigma \sim n^4$

 $\sigma_{ij}(E) \propto \frac{f}{\Delta E_{ii}^2}$

- Into high n
 f~n⁻³, ΔE~n⁰, σ ~ n⁻³
- Z-scaling
 - $\Delta n=0$
 - $f \sim Z^{-1}$, $\Delta E \sim Z$, $\sigma \sim Z^{-3}$, $\langle \sigma v \rangle \sim Z^{-2}$
 - $\Delta n \neq 0$
 - $f \sim Z^0$, $\Delta E \sim Z^2$, $\sigma \sim Z^{-4}$, $\langle \sigma v \rangle \sim Z^{-3}$

Direct and Exchange (cont'd)

Ionization cross sections

Lotz formula:

$$\sigma_{ion}(n,E) = 2.76 \,\pi a_0^2 \frac{Ry^2}{I_n} \frac{\ln(E/I_n)}{E} = 2.76 \,\pi a_0^2 \frac{n^4 \ln X}{Z^4}$$

Same theoretical methods as for excitation: Born, Coulomb-Born, DW, CC, CCC, RMPS...

3-Body Recombination

$$A + e \leftrightarrow A^+ + e + e$$

3-body rate coefficient $\alpha_{Z+1}(T_e)$ from ionization rate coefficient $S_Z(T_e)$:

$$\alpha_{Z+1}(T_e) = \frac{1}{2} \frac{g_Z}{g_{Z+1}} \left(\frac{2\pi\hbar^2}{m_e T_e}\right)^{3/2} exp\left[\frac{E_Z}{T_e}\right] S_Z(T_e)$$

Rates from rate coefficients: $n_e S_Z(T_e)$ but $n_e^2 \alpha_{Z+1}(T_e)$

Likes high-n states;
$$\alpha(T_e) \sim 1/T_e^{9/2}$$

NIST National Institute of Standards and Technology

Collisional Methods and Codes

- Plane-wave Born (first order perturbation)
- Coulomb-Born (better for HCI)
- Distorted-wave methods
- Close-coupling (CC) methods
 - Convergent CC (CCC)
 - R-matrix (with pseudostates, etc.)
 - B-splines R-matrix
 - Time-Dependent CC

- ...

Relativistic versions are available

Heavy-particle collisions

In *thermal* plasmas electrons are always more important for excitations than heavy particles Exception: **closely-spaced levels** (e.g., 2s and 2p in H-like ions)

Neutral beams: **E** ~ 100-500 keV \Rightarrow heavy particle collisions are of highest importance

Charge exchange $H + A^{z+} \Longrightarrow H^+ + A^{(z-1)+}(n)$

- Very large cross sections > 10⁻¹⁵ cm²; $\sigma(Z) \sim Z \cdot 10^{-15} cm^2$
- High excited states populated: $n \sim Z^{0.77}$
- Higher *l* values are preferentially populated but it depends on collision energy and *n*

Neutral beam in ITER: H+W⁶⁴⁺

$$\sigma(Z) \sim Z \cdot 10^{-15} \ cm^2 = 6.4 \cdot 10^{-14} \ cm^2$$

 $n \sim Z^{0.77} \approx \mathbf{25}$

Classical Trajectory Monte Carlo (CTMC): two variations

D.R.Schultz and YR, to be published

Autoionization

NIST National Institute of Standards and Technology

Resonances in excitation

Direct excitation

Intermediate states

Intermediate AI states (coupled channels!)

Excitation-Autoionization

3s²3p⁶3d¹⁰4s² Xe²⁴⁺: Pindzola et al, 2011

When EA is important:

- few electrons on the outermost shell
- Mid-Z multielectron ions
- ...but less important for higher Z (rad!)

EA in ionization cross sections is not required for detailed modeling with AI states!

NIST National Institute of Standards and Technology

IP

Resonances in photoionization

Fe III

3d⁵(⁶S)ns ⁷S + hv -> 3d⁵ ⁶S

3d⁵(⁶S)ns ⁷S + hv -> 3d⁴4p(⁴P^o)ns ⁷P^o -> 3d^{5 6}S

A. Pradhan

Selection rules

- Examples of AI states: 1s2s², 1s²2pnl (high n)
- Same old rule: **before = after**
- $A^{**} \rightarrow A^* + \varepsilon l$
 - Exact: $P_i = P_i$; $\Delta J = 0$
 - Approximate (LS coupling): $\Delta S = 0$, $\Delta L = 0$
- $2p^2 {}^{3}P \rightarrow 1s + \epsilon p$: parity/L violation (for LS)!
 - BUT: $\Psi(2p^2 {}^{3}P_2) = \alpha \Psi(2p^2 {}^{3}P_2) + \beta \Psi(2p^2 {}^{1}D_2) + ...$
 - and $\Psi(2p^{2} {}^{3}P_{0}) = \alpha' \Psi(2p^{2} {}^{3}P_{0}) + \beta' \Psi(2p^{2} {}^{1}S_{0}) + \dots$
 - YET: A_a(2p^{2 3}P₁) is much smaller...

2p² autoionization probabilities

Level	Ne ⁸⁺	Fe ²⁴⁺
³ P ₀	2.2(10)	3.7(12)
³ P ₁	3.1(8)	1.9(10)
³ P ₂	6.2(11)	1.1(14)
¹ D ₂	2.7(14)	2.3(14)
¹ S ₀	1.4(13)	3.2(13)

Radiative recombination

DR step 1: dielectronic capture

DR step 2: radiative stabilization

National Institute of Standards and Technology

Dielectronic Recombination

$$\begin{array}{ccc} A^{+} + e \xrightarrow{DC} & A^{**} \xrightarrow{AI} & A^{+} + e \\ & & \downarrow_{RS} & \\ & & A^{*} + h\nu \end{array}$$

Example: $\Delta n=0$ for Fe XX $2s^22p^3$ $2s^22p^3 {}^{4}S_{3/2} + e \rightarrow 2s2p^4 ({}^{4}P_{5/2})nl$ $2s^22p^3 {}^{4}S_{3/2} + e \rightarrow 2s2p^4 ({}^{4}P_{5/2})nl$ $2s^22p^3 {}^{4}S_{3/2} + e \rightarrow 2s2p^4 ({}^{4}P_{5/2})nl$

n ≥ 7

Savin et al, 2004

Examples of dielectronic recombination & resonances

 $He^+ + e$

A. Burgess, ApJ 139, 776 (1964)

This work solved the ionization balance problem for solar corona

Dielectronic satellites are important for plasma diagnostics (e.g., He- and Li-like ions)

Ar at NSTX, Bitter et al (2004)

BUT: DR for high-Z multi-electron ions is barely known!

Connection between DC and EXC

Connection between DC and EXC

NIST National Institute of Standards and Technology

Inner-shell dielectronic resonances in HCI

 $K^2 L^8 M^k + e \rightarrow K^2 L^7 M^k n ln'l'$

NIST National Institute of Standards and Technology

Experiment

Theory

He-like lines and satellites

O.Marchuk et al, J Phys B 40, 4403 (2007)

NIST National Institute of Standards and Technology

Energy levels in He-like Ar

- Ground state: 1s2 1S0
- Two subsystems of terms
 - Singlets 1snl 1L, J=l (example 1s3d 1D2)
 - Triplets 1snl 3L, J=I-1,I,I+1 (example 1s2p 3P0,1,2)
- Radiative transitions within each subsystem are strong, between systems depend on Z

He-like Ar Levels and Lines

NIST National Institute of Standards and Technology

Z-scaling of A's

- **W**[E1]: A(1s² ${}^{1}S_{0} 1s2p {}^{1}P_{1}) \propto Z^{4}$
- **Y**[E1]: A(1s2 ¹S₀ 1s2p ³P₁)
 - $\propto Z^{10}$ for low Z
 - $\propto Z^8$ for large Z
 - $\propto Z^4$ for very large Z
- **X**[M2]: A(1s² ${}^{1}S_{0} 1s2p {}^{3}P_{2}) \propto Z^{8}$
- **Z**[M1]: A(1s² ${}^{1}S_{0} 1s2s {}^{3}S_{1}) \propto Z^{10}$

1s2Inl satellites

$$1s^2 + e \leftrightarrow 1s2l2l'$$

- 1|2|2|'
 - 1s2s²: ²S_{1/2}
 - 1s2s2p:
 - 1s2s2p(¹P) ²P_{1/2,3/2}
 - 1s2s2p(³P) ²P_{1/2,3/2}; ⁴P_{1/2,3/2,5/2}
 - 1s2p²
 - 1s2p²(¹D) ²D_{3/2,5/2}
 - 1s2p²(³P) ²P_{1/2,3/2}; ⁴P_{1/2,3/2,5/2}
 - 1s2p²(¹S) ²S_{1/2}
- 1s2lnl'
 - Closer and closer to W
 - Only 1s2l3l can be reliably resolved
 - Contribute to W line profile

