Astrophysical Spectroscopy

Eugene Churazov

Outline

Astrophysically abundant elements Two examples of "Hydrogen" spectroscopy X-ray Astronomy Galaxy clusters and hot plasma

LCDM Universe (Today)

Abundance of elements in the Earth (crust)

https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth%27s_crust

Abundance of elements in the Universe (today)

https://en.wikipedia.org/wiki/Nucleosynthesis

Origin of elements

https://en.wikipedia.org/wiki/Nucleosynthesis#/media/File:Nucleosynthesis_periodic_table.svg

Big Bang Nucleosynthesis

NASAWAAP Selence Toom WANPIN1097 Et non Mancanae grachet Sielgman, Encyclosoffe al Acamany and Actopreses i molitate al Physics' Sciencer, 2009

https://scioly.org/wiki/index.php/Astronomy/Stellar_Evolution

GW170817

Typical abundances today (Sun photosphere)

Element	Abundance (by numb	er)								
Н	1.00e+0										
Не	9.77e-2										
С	3.63e-4	9									
N	1.12e-4	6 C16	.8 ⁴⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰	Fe ⁵⁶	0-629-029-029-029-02	000000000000000000000000000000000000000	-ano-anona			/U ²³	5
0	8.51e-4	S Hef	5						000000-0	~~~~U	238
Ne	1.23e-4	N I									
Να	2.14e-6										
Mg	g 3.80e-5										
Al	2.95 <i>e</i> -6	Â6 4									
Si	3.55e-5	g ene									
S	1.62e-5	E S Ha		https://en.wikipedia.org/wiki/Nuclear_binding_energy							
Cl	1.88e-7	d 5									
Ar	3.63e-6	1 H2									
Са	2.29e-6	0 111	20	60		120	150	190	210	240	
Cr	4.84e-7	0	30	60	Numb	er of rud	ecns in n	ucleus	210	240	270
Fe	4.68e-5										
Ni	1.78e-6	0									
Со	8.60e-8	Our	UNI	vers	e is c	ιπος	nate	a by	пуа	roge	n
		. 10	0/ -								

+10% of He + small amount of other el.

Hydrogen 21 cm lineHyperfine splitting of the ground state $A \sim 10^{-15} \, \mathrm{s}^{-1}$ Lifetime $\sim 10 \, \mathrm{Myr}$ $kT_s \gg h\nu$ $I = C \times n_H$

https://www.mpifr-bonn.mpg.de/pressreleases/2016/13

100

U

N., Berna'

200-130

aniumin Winkel 8

60,

Hydrogen Ly_α (1215 Å) Forest

Gunn-Peterson Trough

Image: Bob Carswell

21 cm again

Bowman+18

X-ray astronomy & spectroscopy

X-ray image of Coma cluster

The best 10 keV plasma in the Universe (almost) zero density limit (10⁻³ cm⁻³) (almost) optically thin (almost) pure collisional ionization (almost) Maxwellian

X-ray astronomy

Atmosphere is transparent in optical band Atmosphere is opaque to X-rays

We are opaque in optical band We are ~transparent for X-rays

X-ray astronomy is only possible from space

It is difficult to reflect X-rays

X-ray history (of clusters)

First extragalactic X-ray source detected – M87/ Virgo (Byram et al., 1966, Bradt et al., 1967) – Aerobee rocket flight

UHURU satellite (1970-1973) (Kellog et al., 1972, Forman et al., 1972) Many clusters, very powerful L_x~10⁴³⁻⁴⁵ erg/s Extended!

Ariel-5 satellite (1974-1980) Lines in the spectra – thermal plasma! (Mitchell et al 1976)

... Einstein observatory, Rosat, ASCA, Chandra, XMM-Newton

Major X-ray observatories (for clusters) today

Angular resolution <1"

Effective area ~2500 cm²

Gratings on XMM and Chandra

$\Delta E \sim 4 \text{ eV}$

(But only for compact sources and with small efficiency)

~100 cm²

For clusters - one needs non-dispersive spectrometer

Solution: cryogenic bolometers with <5 eV resolution

Hitomi

BLUE: Best previous spectrum (Suzaku CCD; FWHM 140 eV)

Hitomi Collaboration

Galaxy clusters

Clusters usually refer as

Clusters are the most massive gravitationally bound structures in the Universe....

Clusters are formed recently...

Clusters are powerful X-ray sources....

Clusters represent a fair sample of matter (which is able to cluster) in the Universe....

Clusters are great astrophysical plasma laboratories

Optical image of a patch of the sky (Coma Berenices)

Count galaxies Estimate size of the region Line-of-sight velocities of galaxies

Clusters and Dark Matter

While examining the Coma galaxy cluster in 1933, Zwicky was the first to use the virial theorem to infer the existence of unseen matter, what is now called dark matter. He obtained a cluster mass about 160 times greater than expected from galaxies luminosity, and proposed that most of the matter was dark.

Radiation dominated (Dark) Matter dominated (Dark) Energy dominated

Planck: Map of the CMB temperature fluctuations

Growth of perturbations in EdS Universe [z=1-1000]

first massive clusters

This is why clusters are the most massive systems in the Universe (there are ~50 clusters in observable Universe with mass > 10¹⁵ M_{Sur}

ASA/WMAP Science

Linear evolution of gravitational potential

Nonlinear evolution of the potential

$$-G\frac{M^2}{R_i} = -G\frac{M^2}{R_f} + \frac{1}{2}G\frac{M^2}{R_f}$$
$$R_f \sim \frac{1}{2}R_i \implies \phi_f \sim 2\phi_i$$
Big and deep potential well => Hot plasma => X-rays

(DM+Baryons) Potential Well

Dark matter

Stars

Hot gas

Clusters usually refer as

Clusters are the most massive gravitationally bound structures in the Universe....

Clusters are formed recently...

Clusters are powerful X-ray sources....

Clusters are representing a fair sample of matter (which is able to cluster) in the Universe....

Clusters are great astrophysical plasma laboratories

What we can learn from X-ray spectra

The only existing resolved He-like triplet of Iron from a cluster

Plasma in galaxy clusters

 $n_e \sim 10^{-3} \,\mathrm{cm}^{-3} \,kT_e \sim 10 \,\mathrm{keV} \,u \sim 500 \,\mathrm{km} \,\mathrm{c}^{-1} \,L \sim 1 \,\mathrm{Mpc}$

Spectroscopy

Material properties

CEI, t_i~10 Myr; Age~Gyr

t_{ee}~3 10⁵ yr; t_{ei}~few 10⁸ yr ~Maxwellian

Optically thin (free-free)

 $\lambda \sim 10 \text{ kpc}$ Re ~ 10
Pr ~ 0.02 $\beta = 8\pi \frac{nkT}{B^2} \sim 100$

 $\rho_e \sim 10^{\overline{3}} \,\mathrm{km} \ll \lambda$

Are clusters optically thin?

Optical depth for free-free

 $\frac{L_X}{4\pi R^2 \sigma T^4} \approx \frac{10^{45} \text{ erg/s}}{10^{77} \text{ erg/s}} \approx 10^{-32}$

Thomson optical depth

 $\tau_T = \sigma_T n_e R \approx 10^{-3} - 10^{-2}$

Clusters are optically thin in X-rays (in continuum)

Resonant scattering (absorption+emission)

$$\sigma_0 = \frac{\sqrt{\pi} hr_e cf_{ik}}{\Delta E_D}; \quad \Delta E_D = E_0 \frac{\mathbf{v}}{c} = E_0 \left[\frac{2kT}{Am_p c^2}\right]^{1/2}; \quad \boldsymbol{\tau}_0 = n_i l \sigma_0$$

- 1) Abundant elements; He-like ions; maximal oscillator strength
- 2) Heavy elements have narrow lines (if no turbulent motions)
- 3) Product of density and size

Optical depth in lines

NGC4636; 0.6 keV

M87; 1-3 keV

Perseus; 3-7 keV

lon	E, keV	ſ	w_2	τ , NGC 4636	au, Virgo/M87	τ , Perseus
O VIII	0.65	0.28	0.5	1.2	0.34	0.19
Fe XVIII	0.87	0.57	0.32	1.3	0.0007	$1.5 \cdot 10^{-7}$
Fe XVII	0.83	2.73	1	8.8	0.0005	$2.8 \cdot 10^{-8}$
Fe XXIII	1.129	0.43	1	0.016	1.03	0.16
Fe XXIV	1.168	0.245	0.5	0.002	1.12	0.73
Fe XXV	6.7	0.78	1	0.0002	1.44	2.77

Line is suppressed in the core Photons are re-emitted at the outskirts

Spectral shape of the line

Core of the line is suppressed

Gas Velocities I

$$\sigma_0 = \frac{\sqrt{\pi} hr_e cf_{ik}}{\Delta E_D}; \quad \Delta E_D = E_0 \left[\frac{2kT}{Am_p c^2} + \frac{V_{turb}^2}{c^2} \right]^{1/2}$$

FeXXV; 6.7 keV line; T=5 keV

Radiative width: 0.3 eV

Thermal width: 3 eV

Turbulence (300 km/s): 7 eV

Gas Velocities

Optical depth strongly depends on the character of motions (and on the correlation length)

Direct evidence for resonant scatterings from HITOMI

Fig. 1. Hitomi SXS observation regions overlaid on the Chandra X-ray image of the Perseus Cluster in the 1.8–9.0 keV band divided by the spherically symmetric model for the surface brichtness. In

this paper we will a includes the central obs1_whole (cyan). (

Table 3. Rest-frame Fe line properties in the 6–8 keV band that have optical depth ≥0.01.

Ion	Energy (eV)	Lower level*	Upper level*	Oscillator strength	Optical depth r $\sigma_{\infty} = 0 \text{ km s}^{-1}$	Comments*
Fexxiv	6616.73	$1s^2 2s_{1/2} \ {}^2S_{1/2}$	$1s_{1/2}2s_{1/2}2p_{1/2}$ ⁴ $P_{3/2}$	3.26×10^{-2}	2.22×10^{-2}	н
Fexxv	6636.58	$1s^{2} S_0$	$1s2s^{3}S_{1}$	3.03×10^{-7}	6.75×10^{-3}	Hox, a
Fexuv	6653.30	1s22s1/2 2S1/2	1s1/22s1/22p1/2 2P1/2	3.13×10^{-1}	1.54×10^{-2}	r
Fexxiv	6661.88	1s22s1/2 2S1/2	$1s_{1/2}2s_{1/2}2p_{3/2}^{-2}P_{3/2}$	9.78×10^{-1}	4.69×10^{-1}	4
Fexxy	6667.55	$1s^{2} S_0$	1s1/22p1/23P1	5.79×10^{-2}	1.92×10^{-1}	Hea, y
Fexav	6676.59	1s22s1/2 2S1/2	1s1/22s1/22p3/22P1/2	1.92×10^{-1}	$9.67 imes 10^{-2}$	t
Fexxy	6682.30	$1s^{2/4}S_0$	1s1/22p3/2 3P2	1.70×10^{-5}	7.26×10^{-3}	Hea, x
Fexxy	6700.40	$1s^{2} S_0$	$1s_{1/2}2p_{3/2}$ ¹ P ₁	7.19×10^{-1}	2.27	Hear, ar
Fe XXVI	6951.86	13	$2p_{1/2}$	1.36×10^{-1}	8.81×10^{-2}	Lya ₂
Fexxvi	6973.07	15	203/2	2.73×10^{-1}	1.69×10^{-1}	Lya ₁
Fexxy	7872.01	$1s^{2}S_{0}$	$1_{s3p}{}^{3}P_{1}$	1.18×10^{-2}	3.87×10^{-2}	$He\beta_2$, intercomb
Fexxy	7881.52	$1s^{2}S_{0}$	$1s3p^{-1}P_1$	1.37×10^{-1}	3.73×10^{-1}	$He\beta_1$, resonance

*Optical depths are integrated over an r = 0'-40' region with $\sigma_v = 0 \text{ km s}^{-1}$. Energies and oscillator strengths are from AtomDB version 3.0.8. †Letter designations for the transitions as per Gabriel (1972).

Scattering phase function = W₂ x Rayleight + W₁ x Isotropic

He-like ions; $1s^2 ({}^{1}S_0) - 1s2p ({}^{1}P_1) \implies W_2 = 1$

Polarization II

Rayleigh phase function + Quadrupole = Polarization

100% polarized

Center: 0% Outskirts: 10%

Polarization II

Rayleigh phase function + Quadrupole = Polarization

100% polarized

Center: 0% Outskirts: 10%

Transverse ICM velocities and polarization

Quadrupole component can be induced by gas motions!

Motion along l.o.s. Motion transverse l.o.s.

- 1) On average gas motions reduce optical depth
- 2) But can cause polarization in the cluster core

What we want from X-ray spectroscopy?

Density Temperature Abundances Velocities

Why?

To accurately measure cluster masses To understand gas heating processes

Cooling flows

Cooling time

$$t_{cool} = \frac{\frac{3}{2}nkT}{n^2\Lambda(T)} \approx 510^8 \text{ years}$$

Fastest cooling near the center

Cooling rate

$$\dot{M} = \frac{L_x}{\frac{3}{2}kT} \times \mu m_p \approx 1000 M_{\odot} \text{ yr}^{-1}$$
 $(L_x = 10^{45} \text{ erg/s})$

Gas density

Gas temperature

Surface brightness

Temperature

The highest density is at the center => cools first! When densest gas cools it is compressed and becomes even denser! But

What is the fate of cooled gas? Stars?

$$10^{3} M_{\odot} \text{ yr}^{-1}$$

 $10^{3} \times 10^{10} \text{ yr} \sim 10^{13} M_{\odot}$

Where are emission lines, characteristic for cool gas?

Or there is a source of energy that keeps the gas hot?

$t_{cool} = \frac{nkT}{n^2 \Lambda(T)} \ll t_{Hubble}$

Supermassive black hole

Hot plasma

Clear evidence for the impact of relativistic plasma on thermal gas

Bubbles of relativistic plasma inflated by SMBH How to measure the energy release rate?

Simple numerical simulations

 $L_{AGN} \sim L_{cooling}$

How the gas is heated?

Bubbles induce gas motions - motions dissipate into heat

Identify perturbations in images Relate the amplitude of perturbations to velocities

Getting gas velocity power spectrum from images

 $E(k) = K_0 e^{2/3} k^{-5/3}$

Cooling= $n^2 \Lambda(T)$ Heating = $C \rho V_{1,k}^3 k$

"Outer region" spectrum of the Perseus cluster (He-like triplet)

Predicted velocity power spectra in Perseus and M87

Cluster masses and X-ray spectroscopy

Mass profile of the cluster from X-ray data

$$\frac{1}{\mu m_p n} \frac{dP}{dr} = -\frac{d\varphi}{dr} = -\frac{GM(< r)}{r^2} \quad \text{[stationary, sph.sym.]}$$

Hydrostatic equilibrium equation

P(r) = n(r)kT(r)

Deprojected X-ray data: gas temperature and density

 $M(< r) = \frac{r^2}{G} \frac{1}{\rho} \frac{dP}{dr}$

Mass profile of a real cluster

DM : 80-85% Gas : 12-15% Stars : 2-5%

The results have to be corrected for gas velocities

Only possible with bolometers

Number of massive clusters as a function of amplitude

High-resolution X-ray spectroscopy is coming to astronomy

(EBIT in space)

Spectroscopy can solve many astrophysical problems

Clusters offer an opportunity to test your models