

Spectroscopy in Magnetic Confined Fusion Plasmas PART II

Sebastijan Brezinsek

Institut für Energie und Klimaforschung - Plasmaphysik Forschungszentrum Jülich

Regions of Interest

Example Facilities

LOCK for PSI studies

TEXTOR shutdown 31.12.2013

R~3m B_t : 3.45 T P_{aux} ~40MW a~1.25mI_p: ~5MA V_p ~100m³

Plasma-Surface Interaction Processes

Plasma-Surface Interaction Processes

Processes to be measured - studied - predicted - controlled - understood:

- Plasma composition (fuel and impurities)
- Erosion, transport, and deposition/mixing
- Impurity source distribution and its strength
- Energy angular distribution of sputtered particles
- Penetration depth and radiation distribution
- Fuelling, recycling, and retention/release
- Plasma conditions
- Ionisation /recombination regime in divertor

Input needed for ITER, Reactor in view of operation (radiation/dilution), plasma fueling (fuel cycle), nuclear safety (retention/dust), lifetime (erosion /modification)

Spectroscopy is one of the view methods which permit in-situ access to PSI processes in fusion plasmas as well as plasma conditions at most critical regions

Outline

- Introduction
- Spectroscopic techniques
- Hydrogen (and isotopes) spectroscopy
- Beryllium hydride spectroscopy
- Tungsten spectroscopy
- Hydrocarbon and carbon spectroscopy

Diagnostic Techniques

Mainly passive spectroscopy:

- Determination of particle fluxes
 - Fuel recycling flux (e.g. D, H, D₂, HD, H₂)
 - Intrinsic impurity flux (C, W, O ...)
 - Extrinsic impurity flux (Ar, Ne, N ...)
- Energy and velocity distribution
 - Zeeman-splitting analysis
- Molecule characterisation
 - Ro-vibrational population
 - Dissociation chain
- Plasma parameter determination
 - Balmer-line ratios => T_e
 - Stark broadening => n_e
 - Charge-exchange recombination
 => T_i and n_i

.... and many more

Mainly active spectroscopy:

- Local plasma parameters (atomic beams)
- Population of energy levels (LIF)
- Impurity concentrations (CXRS NBI)
- Fuel content and impurity composition of layers (LASER ablation & desorption)
- Molecular densities (CRDS LASER)

USUALLY:

- => ionising plasma conditions and no opacity
- \Rightarrow only divertor can enter recombination and opacity can play a role

Spectroscopy: From Photons to Particles I

Line emission

$$\varepsilon = \frac{1}{4\pi} n_A^* A_{ij}$$

$$n_A^* \sum_{k \le i} A_{ik} = n_A n_e < \sigma_{Exg} \upsilon_e >$$

with Γ as branching ratio:

$$\Gamma = A_{ik} / \sum_{k \le i} A_{ik}$$

$$I_{tot} = \Gamma \frac{hv}{4\pi} \int_{r_1}^{r_2} n_A(r) n_e(r) < \sigma_{Exg} \upsilon_e > dr$$

Spectroscopy: From Photons to Particles II

$$\Phi_{A} = \frac{4\pi}{\Gamma} \frac{I_{tot}}{h\nu} \frac{\langle \sigma_{I} \upsilon_{e} \rangle}{\langle \sigma_{Exg} \upsilon_{e} \rangle} = 4\pi \frac{I_{tot}}{h\nu} \frac{S}{XB}$$

In case of molecular emission: D/XB with "D" for Decay => Dissociation + Ionisation

the expression S / XB has to be obtained by calculations (including CRM's) or experimentally

$$\frac{\langle \sigma_{I} \upsilon_{e} \rangle}{\Gamma \langle \sigma_{Exg} \upsilon_{e} \rangle} = \frac{\Phi_{A}}{4\pi \left(I_{tot} / h\nu \right)}$$

(OPEN) ADAS – "ionisation events per photon

Experiments: Lock Systems in TEXTOR

Echelle Gitter G_{HR} 220 mm x 110 mm 79 Striche/mm Blaze-Winkel 76°

Outline

- Introduction
- Spectroscopic techniques
- Hydrogen (and isotopes) spectroscopy
- Beryllium hydride spectroscopy
- Tungsten spectroscopy
- Hydrocarbon and carbon spectroscopy

Arrangement / Neutrals Penetration

09.05.2019

Composition of Recycled Deuterium

- High D⁺ flux to the wall (10²⁴ D⁺ s⁻¹m⁻²), surface saturation, and almost 100 % recycling
- Thermal release of D₂ from the (graphite) wall and some reflected fast particles
- Destruction chain depends on local plasma conditions and surface temperature => atoms at high T_{surface}

Measurement of D₂ in TEXTOR

JÜLICH

from rotational to vibrational to electronic transition....

- Electronic transition of highly excited hydrogen molecules
- Direct visability of the impact of nuclear spin! Multiplicity!

Rotational Population Temperatures

2))

rel. Besetzung I(Q(K')) / I(Q(K'=

88482

500

 $F_{v}(K')$ [cm⁻¹]

Optical rules applied P, Q, R branches

Hönl-London Factors

- Rotational and vibrational population according to Boltzmann distribution
- D_2 (injections) for plasma diagnosis (or calibration) otherwise D₂ recycling flux
- T_{rot} and T_{vib} also used for diagnosis of plasmas
- Additional parameter determined by surface properties: T_{surface} / vibrational excitation

[w.e.]

T^{v'\/}=(1293.9 +/- 74.8) K

O-Zweig: v'=0, $\Lambda'={}^{3}\Pi_{u}$

1000

 D_{2}

88482

Vibrational Population Temperatures

Optical rules applied Main diagonals called Fulcher- α bands

Franck-Condon Factors for transfer upper state to ground state population

- Population in upper state can be determined and linked to ground state
- CRM connects excited state with ground state: reproduce "plasma part"
- Surface materials can impact on initial distribution: e.g. C, a-C:H layers, Ta
- Responsible reactions: Eley-Rideal etc.

Photon Efficiency and Population of 3p ${}^{3}\Pi_{u}$

- CRM for hydrogen and deuterium exist meanwhile (e.g. in EIRENE)
- Electronically and vibrationally resolved data available

Comparison with EIRENE Code

- Good agreement in easy ionizing plasma conditions
- Assuming thermal molecules at start

#87844-904

- Recently D₂ recycled at W showed different behavior
- Next challenge: recombining plasms

Destruction Path for Hydrogen Molecules

Cold Atoms? Independent Proof via LIF on Ly- α

Measure population and energy of atoms in ground state of deuterium

Cold Atoms? Confirmed by LIF on Ly- α

$N_{\rm e}$ and $T_{\rm e}$ in Recombining D Plasmas

JÜLICH Forschungszentrum

Transfer to complex recombining plasmas

- Balmer and Paschen series recombination used and analysed (compared with ADAS data)
- Line ratio provides T_e, "continuum jump" analysis (Terry et al.)

Stark broadening for n_e determination (Poetzel et al.)

JET Divertor: Recombining D Plasmas (JET-ILW)

- Provides T_e and n_e from volume recombination in front of target plate
- Detachment indicator
- Issue Ly-α radiation insufficient to explain radiation in these plasmas
- Revisiting data and new diagnostics to check for opacity effects in JET (B. Lomanowski et al.)

JET Divertor: Recombining D Plasmas

- Interference filtered data used to obtain 2D distribution
- Full detachment at inner divertor leg observed
- Control of ionization front position possible (TCV)

- Multiple cameras with interference filters used to obtain spatially resolved T_e
- Most suitable D_{γ} over D_{α}

- Introduction
- Spectroscopic techniques
- Hydrogen (and isotopes) spectroscopy
- Beryllium hydride spectroscopy
- Hydrocarbon spectroscopy
- Tungsten spectroscopy

Beryllium Hydride Formation

Chemical (assisted physical) sputtering also observed in JET-ILW at the Be limiters

S. Brezinsek NF 2014

- Identical limiter discharges with temperature scan
- BeD observed and decays with T_{surf}
- D₂ increases with T_{surf} (desorption)
- Ratio of Be I and Be II fluxes provide dissociation chain information: 25% via BeD⁺ formation

Beryllium Hydride Spectroscopy Modelling

Beryllium Hydride Synthetic Spectra

Outline

- Introduction
- Spectroscopic techniques
- Hydrogen (and isotopes) spectroscopy
- Beryllium hydride spectroscopy
- Tungsten spectroscopy
- Hydrocarbon spectroscopy

WF₆ puff

LCFS

SOL

TEXTOR W calibration

Level Diagram of Neutral W

- Prominent transitions in the visible spectral range
- Definition of an artificial ground state ⁵D population (T_w) in earlier times [Beigman et al.]

Injected W and Sputtered W: WI emission

- Calibration of W lines with WF6 injection (dissociation at about T_e~0.1eV)
- W from WF₆ dissociation representative for W from sputtering?
 - No difference in line shape of different WI and WII lines
 - Lines and ratios of WI lines comparable in sputtered and injected W
 - WII lines measured and quantified in WF₆ injections

Photon Effciencies: Experiment and ADAS

electron temperature [eV]

- Experimental data is "effective" assuming WF₆ dissociation is complete
- Experimental data in general in good agreement with ADAS (lower)
- Largest deviation for the "lowest" ground state transition (λ=498.3nm)
- ADAS considers only "real" ground state poppulated (no T_w?)

Tungsten Hydride: : ${}^{6}\Pi - {}^{6}\Sigma^{+}$ Transition

- Observation of WD molecule at very high D⁺ fluxes (10²³ions s⁻¹m⁻²) on cold W surfaces (<600K)
- Chemically Assisted Physical Sputtering by C ions with sufficient high impact energy (~100eV)

Tungsten Hydride: : ${}^{6}\Pi - {}^{6}\Sigma^{+}$ Transition

 Not produced in plasma as WF₆ injection in D plasma

- Observed in ASDEX Upgrade and produced during ELMs too (D⁺ ions at high energy)
- Looking forward to see a molecular modelling....

J9.05.20 IS

Outline

- Introduction
- Spectroscopic techniques
- Hydrogen (and isotopes) spectroscopy
- Beryllium hydride spectroscopy
- Tungsten spectroscopy
- Hydrocarbon and carbon spectroscopy

Quantification of Sputtering Yields: Example C

Identical observation volume and integration time!

Sputtering Yields for Graphite

Chemical (C_xH_y) and physical sputtering (C) of graphite by hydrogen isotopes in ion beam facilities

In-situ determination and origin required: chemical or physical sputtering / bulk or carbon layers?

In-situ Measurable Molecular Species: CH, CH⁺, C₂ JÜLICH

Origin not visible in emission spectroscopy – in-situ calibration to get the footprint

Modelling of the Gerö Band

Hydrocarbon Footprint by CxHy Injection in Plasmas Jül

Chemical Erosion: Temperature Dependence

Identical plasmas at T_e ~50eVwith external change of surface temperature Above 1000K chemical erosion drops and vanishes at 1300K Flux density: ~5x10²³ions s⁻¹m⁻²

Chemical Erosion: Flux Dependence

Normalisation: 30 eV T_{surf}(max) Difficult to

decouple from E_{in}

Chemical sputtering decreases with increasing flux

09.05.2019

Chemical Sputtering: Energy Threshold

At low impact energies (~2-3eV), the chemical sputtering part of C is almost absent

JET-C with CFC divertor

- Erosion zone on graphite
- Divertor detaches and reveals chemical sputtering threshold
- Test with local methane source injection

Chemical Erosion: a-C:H layers

CD intensity / 10¹⁵ph s

cm