



# Spectroscopy in Magnetic Confined Fusion Plasmas PART I

Sebastijan Brezinsek

Institut für Energie und Klimaforschung - Plasmaphysik Forschungszentrum Jülich



# **Sun: a Cosmic Power Plant**

Energy production in the sun by nuclear fusion of lightest elements: proton-proton (pp) cycle



Mass defect in this reaction: 4.8x10<sup>-29</sup> kg => 1 kg of H produces 6.4x10<sup>14</sup> J of energy

#### plasma

pressure:  $1 \times 10^{16}$  Pa =  $1 \times 10^{11}$  bar (core) temperature: 1.3 keV (core) density:  $1 \times 10^{32}$  m<sup>-3</sup> (core)







- Introduction
- Tokamak functionality
  - Examples from spectroscopy in MCF
  - JET tokamak
  - W as plasma-facing material
- ITER
  - Set-up the larget machine in the world
  - ITER optical diagnostics
- W7-X
  - A further step in complexity

# **Nuclear Fusion Reactions and Reaction Partners**





- Thermonuclear fusion with largest reaction rate: dt fusion reaction
- Inertial (ICF) and magnetically confined fusion (MCF) plasma studies are aiming in the exploitation of the DT reaction (on earth)



Spectroscopy of fuel  $H_2$ ,  $D_2$ ,  $T_2$ , HD, HT, DT molecules and H, D, T atoms and of fusion ash, He atoms and ions, required!

Maxwell-averaged reaction activity vs ion temperatures for fusion reactions



09.05.2019

# **Example of Emission Spectra in Fusion Plasmas**



D<sub>2</sub> and T<sub>2</sub> emission spectra (plasma edge)



H, D, T emission spectra (exhaust)



D. Hillis RSI 1999

## **Nuclear Fusion Reactions: DT**



Measure for the fusion power in a 50:50 DT reaction is the so-called triple product:

ion density (n<sub>i</sub>) x ion temperature (T<sub>i</sub>) x confinement time ( $\tau_E$ )

Ignition in magnetically confined fusion plasmas achievable if:

 $n_{i} [10^{20} \text{ m}^{-3}] \times T_{i} [10 \text{ keV}] \times t_{E} [5s] \ge 5 \times 10^{21} \text{ keV s m}^{-3}$  (Lawson criterion)



Requires D and T above 10keV, but the fuel starts as  $D_2$  or  $T_2$  gas or as DT ice pellet entering cold plasma in eV range.

- Spectroscopy from eV to keV range in one device
- Emission in the IR-VIS towards VUV-X-ray range



# **Nuclear Fusion Reactions: DT Fuel and Restrictions**



#### Plasma densities in the range of 10<sup>27</sup> m<sup>-3-</sup>10<sup>32</sup>m<sup>-3</sup>



LASER-fusion (ICF)



Plasma densities in the range of 10<sup>17</sup>-10<sup>21</sup> m<sup>-3</sup> D natural isotope in sea water: 0.015%

T must be breeded in a fusion reactor: <sup>7</sup>Li+n -> T +  $\alpha$  + n' - 2.47 MeV <sup>6</sup>Li+n-> T+ $\alpha$  + 4.78 MeV

T is radioactive with a half-life of 12 years

Challenging environment (access)

- radioactive fuel
- first wall material activation
- neutron impact

Reduced number of spectroscopic techniques applicable

Magnetic confinement (MCF)

# **Particles in Magnetised Plasmas**





# **Splitting and Observation of Spectral Lines**



- Line splitting due to magnetic field strength (measure the local field): Zeeman and Paschen-Back effect
- Orientation of the observation with respect to the magnetic field important:  $\sigma$  and  $\pi$  components



- Variables: energy of H atoms (origin of atoms), composition, and resolution of spectrometer
- Simulation tools available: x-paschen of ADAS suite etc.

# Is a simple toroidal arrangement enough for MCF?



Particle drifts due to forces in (inhomogeneous) B-field:

In torus geometry two inherent drifts appear:  $\nabla B$  drift and curvature drift [so-called "torus drift"]

$$\vec{\mathbf{v}}_D = \frac{m}{qB^3} \left( \mathbf{v}_{\parallel}^2 + \frac{1}{2} \mathbf{v}_{\perp}^2 \right) \vec{B} \times \nabla B$$



Pure toroidal magnetic field induces charge separation due to "torus drift"

- Charge separation induces vertical electrical field E
- Electrical field E and magnetic field B induces E x B drift and movement of all particles outward to the wall
- Second magnetic field component required (poloidal direction) => induces screw-like trajectory (helical field lines) and stability

 $\vec{\mathbf{v}}_D = \frac{\vec{F} \times \vec{B}}{\sigma R^2}$ 

 $\vec{\mathbf{v}}_D = \frac{\vec{E} \times \vec{B}}{R^2}$ 

Spectroscopy at varying magnetic field strength: High field side and low field side can be separated

# Source Localisation by Spectrosopcy

"Cold" atoms near wall surfaces: localization possible via spectroscopy



R

OUTER

SOL

low B



Kukushkin IAEA2016

Bd

INNE

SO

Metallic surface cause reflection – simulations required

DIVERTOR

(Straylight)

Ø₽

Bo ~ 1/R

L-O-S

# **Magnetically Confined Fusion: Main Lines**





# **Magnetically Confined Fusion: Tokamak Principle**



Poloidal field component induced by plasma current resulting in helical, twisted magnetic field structure



Induced poloidal magnetic field is about 1/10 of toroidal field



## Joint European Torus: JET Tokamak





# Joint European Torus: Discharge Example





- JET plasma duration limited by available flux swing and copper coils required to induce plasma current
- Plasma discharge in different confinement modes possible: limiter, ohmic, L-mode, H-mode etc.

# **High Confinement Mode (H-mode)**

- JÜLICH Forschungszentrum
- Transport barrier at the plasma edge (pedestal) reduces energy and particle exhaust
- Improved confinement in the confined plasma region (factor 2): basis for all scaling laws
- H-mode inherent micro-instable: release of particle to the first wall with pedestal collapse (ELMs)



Spectroscopy with temporal resolution of ~1 ms in H-mode required to resolve inter and intra-ELM phases

# **Example of ELM Cycle Analysis in JET Divertor**



- ELM averaging techniques to obtain better statistic for analysis
- Particle flux driven during ELMs and post-outgassing can induce change of local plasma
  - => change from ionization to recombination dominated plasma conditions



# Scaling Laws: Predict the Size for a Device with $\tau_E = 5s$ **J**ÜLICH

Energy confinement time  $\tau_{\rm E}$ :

- Experimental data cannot be fully analytical described:  $\tau_{E} \propto l_{p} \times R^{2}$
- Quality of the thermal isolation (quality of magnetic cage) determined by  $\tau_{E}$
- Multi-machine scaling (self-similiar H-mode plasmas) to extrapolate to required τ<sub>E</sub> (Wind tunnel approach)
- H-mode plasmas in fully attached conditions and mostly with graphite-based PFCs



#### Joint European Torus: JET Tokamak





"Natural impurities" to be considered: Be, W, C as well as O (leaks) and steel components (Ni, Cr, Fe)

# The Challenge with W Spectroscopy



QC (W<sup>27+</sup> - W<sup>35+</sup>)

(a)

Measurement

Modelled Spectrum

wavelength [nm]

Measurement

(flat W-profile)

B V 1s-2p (4.859nm

Modelled Spectrum QC (W<sup>27+</sup> – W<sup>35+</sup>)

wavelength [nm]

W<sup>43+</sup>

6

(during imp. acc.)



20

W<sup>40+</sup>

W<sup>38+</sup> W<sup>39+</sup>

(b)

# The Challenge with W in Fusion Devices



- High radiation potential (core cooling)
- Prone to accumulate in core (transport)
- Low concentration is permitted (10<sup>-4</sup> / 10<sup>-5</sup>), but W source is small
- W control mainly via spectroscopic tools by using divertor cooling by seeding (source) and central heating (core) as actuator





T. Pütterich PPCF 2008 09.05.2019

# Why do we bother with W?





#### **Plasma-Surface Interaction Processes**





Processes depend on plasma facing material, material / projectile mass, material mix and concentration, impact energy (E<sub>in</sub>), impact angle (a), roughness and temperature (T<sub>surf</sub>), plasma conditions

# **Physical Sputtering of W**

 Binary-collision approximation with perpendicular impact of mono-energetic projectiles



- W sputtering by intrinsic (Be, C) or seeding impurities (Ne, Ar, N) above threshold energy E<sub>th</sub>
- Noticeable sputtering by D<sup>+</sup> above E<sub>in</sub>~250eV

Dominant in JET-ILW: Be ions ~ 0.5-1.5%





# **Gross and Net Erosion of W**





- Difference provides local W balance: eroded, re-deposited, and transported away
- Erosion of W is in general low => enough fluence to compare both methods required

# Gross and Net Erosion of W





- Net W erosion: 2.4-4.8 g (RBS and marker tiles)
- Gross W erosion: 40-60 g (WI spectroscopy)
- W re-deposition fraction: >92%



750

500

1100

Strike 250

# Prompt Redeposition: a High-Z (Tungsten) Effect



- Prompt redeposition if  $\rho_{\text{prompt}}$  < 1  $\implies$  large mass and large ionisation probability
- Results in LOW net erosion for W if prompt re-deposition is high.



W I and W II spectroscopy ?



### **ELM-induced W Sputtering in Detached Conditions**



Intra-ELM W source can burn through the cushion of hydrogen and seeding neutrals







## **Ionisation and Recombination**





Plasma conditions determined by e.g. line ratios and appropriate CRMs (e.g. YACORA)

# The Power and Particle Exhaust Issue for ITER





- In order to meet the burning conditions, a certain machine size and auxiliary power topped-up by α-heating
- Neutrons transport 80% of the energy to the wall and blanket modules: heat load on the wall
- He-ash (residual from α heating) is transported out of the plasma on a faster timescale than the energy confinement time
- Particles (D<sup>+</sup>, T<sup>+</sup>, He<sup>2+</sup>, e<sup>-</sup>) are transported in the scrape-off layer towards the divertor target plates at glancing incidence
- In the original scaling law for ITER (unfueled H-mode with 500MW=P<sub>fus</sub>) one reaches at the target plates more than 40 MW/m<sup>2</sup>
- In order to meet limits of materials / components (10MW/m<sup>2</sup>) one needs to ADAPT the plasma solution by strong divertor radiation
- To enable DT plasma operation: W concentration needs to be below 10<sup>-4</sup> which also is connected to life time issues via erosion

# **Step Ladder Approach to a Nuclear Fusion Reactor**



Worldwide approach for a reactor based on a METALLIC tokamak concept



# **Next Step Device: ITER**





- To demonstrate (i) scientific and (ii) technical /plasma-surface interaction feasibility of fusion
- To achieve extended burn in inductivelydriven DT plasma operation with Q=10 (400s)
- To demonstrate readiness of essential fusion technologies (incl. plasma-facing components)
- To test tritium breeding module concepts with 14 MeV-neutron power load on the first wall

Major Radius: 6.2 m Minor Radius: 2.0 m Plasma volume: 840 m<sup>3</sup> Surface area: 260m<sup>2</sup> W and 620m<sup>2</sup> Be Plasma current: 15 MA Magnetic field: 5.3 T (12 T) Energy content: 350 MJ Auxiliary heating: 70-100 MW Height: ~25 m and Diameter: ~26 m

## **ITER Timeline**



#### Step-wise construction of the tokamak and accompanied exploration program



- Large number of spectroscopic systems in support and simulation
- Variation in spectroscopic sensitivity from low power to high power discharges
- ITER requires in addition seeding species: Ne, N<sub>2</sub>, Kr as seeding gas + Ar for DMS

ITER research plan (2018) https://www.iter.org/technical-reports

















- Toroidal Coils

- Poloidal Coils

- Wall / Blanket

© 10









- -Diagnostics
- Tritium Plant
- Remote Handling
- Control & Data



Resting on 493 seismic pads, the 440 000-ton Tokamak Complex comprises 7 levels (2 underground).

#### **ITER: Tokamak Building and Infrastructure**





Complex (including the Diagnostics Building and the Tritium Building)

# **Diagnostic Building**





# Spectroscopic Diagnostics in ITER and their Purpose



| PBS  | System                 | Range             | Function                                                                                  | PA  | Status        |
|------|------------------------|-------------------|-------------------------------------------------------------------------------------------|-----|---------------|
|      | -,                     |                   |                                                                                           |     |               |
| 55E4 | Divertor imp monitor   | 200 – 1000<br>nm  | Impurity species and influx, divertor He density, ionisation front position, $T_{i}$ .    |     | PDR prep      |
| 55E2 | Ha system              | Visible region    | ELMs, L/H mode indicator, $n_T/n_D$ and $n_H/n_D$ at edge and in divertor.                |     | PDR held      |
| 55E3 | VUV spectr. – main     | 2.3 – 160 nm      | Impurity species identification.                                                          | Yes | PDR held      |
| 55EG | VUV spectr. – divertor | 15 – 40 nm        | Divertor impurity influxes, particularly Tungsten                                         | Yes | PDR held      |
| 55EH | VUV spectr. – edge     | 15 - 40 nm        | Edge impurity profiles                                                                    | Yes | PDR held      |
| 55ED | X-ray spectr. – survey | 0.1 – 10 nm       | Impurity species identification                                                           | Yes | PDR prep      |
| 55EI | X-ray spectr. – edge   | 0.4 – 0.6 nm      | Impurity species identification, plasma rotation, T <sub>i</sub> .                        |     | PDR prep      |
| 55E5 | X-ray spectrcore       | 0.1 – 0.5 nm      |                                                                                           |     | PDR prep      |
| 55E7 | Radial x-ray camera    | 1 – 200 keV       | MHD, Impurity influxes, Te                                                                | Yes | PDR held      |
| 55EB | MSE                    | Visible region    | q (r), internal magnetic structure                                                        | Yes | PDR prep      |
| 55E1 | Core CXRS              | Visible region    | T <sub>i</sub> (r), He ash density, impurity density profile, plasma<br>rotation, alphas. |     | CDR held      |
| 55EC | Edge CXRS              | Visible region    |                                                                                           |     | PDR prep      |
| 55EF | Pedestal CXRS          | Visible region    | Best spatial resolution of H-mode pedestal                                                | No  | CDR held      |
| 55E8 | NPA                    | 0.01- 4 MeV       | $n_{T}\!/n_{D}$ and $n_{H}\!/n_{D}$ at edge and core. Fast alphas.                        |     | PDR closed    |
| 55EA | LIF                    | Visible           | Divertor neutrals                                                                         |     | Pre- CDR held |
| 55E  | Hard X-ray Monitor     | 100keV –<br>20MeV | Runaway electron detection                                                                | ю   | PDR prep      |

passive spectroscopy

active (NBI) spectroscopy

active (LASER) spectroscopy

09.05.2019

R. Barnsley et al.



# ITER Plasma Diagnostics => Spectrocopy

# Spectroscopic Diagnostics in ITER and their Purpose



| PBS  | System                 | Range             | Function                                                                                  | PA  | Status        |
|------|------------------------|-------------------|-------------------------------------------------------------------------------------------|-----|---------------|
| 55E4 | Divertor imp monitor   | 200 – 1000<br>nm  | Impurity species and influx, divertor He density, ionisation front position, $T_{I}$ .    |     | PDR prep      |
| 55E2 | Ha system              | Visible region    | ELMs, L/H mode indicator, $n_T/n_D$ and $n_H/n_D$ at edge and in divertor.                |     | PDR held      |
| 55E3 | VUV spectr. – main     | 2.3 – 160 nm      | Impurity species identification.                                                          | Yes | PDR held      |
| 55EG | VUV spectr. – divertor | 15 – 40 nm        | Divertor impurity influxes, particularly Tungsten                                         | Yes | PDR held      |
| 55EH | VUV spectr. – edge     | 15 - 40 nm        | Edge impurity profiles                                                                    | Yes | PDR held      |
| 55ED | X-ray spectr. – survey | 0.1 – 10 nm       | Impurity species identification                                                           | Yes | PDR prep      |
| 55EI | X-ray spectr. – edge   | 0.4 – 0.6 nm      | Impurity species identification, plasma rotation, T <sub>i</sub> .                        |     | PDR prep      |
| 55E5 | X-ray spectrcore       | 0.1 – 0.5 nm      |                                                                                           |     | PDR prep      |
| 55E7 | Radial x-ray camera    | 1 – 200 keV       | MHD, Impurity influxes, Te                                                                | Yes | PDR held      |
| 55EB | MSE                    | Visible region    | q (r), internal magnetic structure                                                        | Yes | PDR prep      |
| 55E1 | Core CXRS              | Visible region    | T <sub>i</sub> (r), He ash density, impurity density profile, plasma<br>rotation, alphas. |     | CDR held      |
| 55EC | Edge CXRS              | Visible region    |                                                                                           |     | PDR prep      |
| 55EF | Pedestal CXRS          | Visible region    | Best spatial resolution of H-mode pedestal                                                | No  | CDR held      |
| 55E8 | NPA                    | 0.01- 4 MeV       | $n_{T}/n_{D}$ and $n_{H}/n_{D}$ at edge and core. Fast alphas.                            |     | PDR closed    |
| 55EA | LIF                    | Visible           | Divertor neutrals                                                                         |     | Pre- CDR held |
| 55E  | Hard X-ray Monitor     | 100keV –<br>20MeV | Runaway electron detection                                                                | 10  | PDR prep      |

passive spectroscopy

active (NBI) spectroscopy

active (LASER) spectroscopy

09.05.2019

R. Barnsley et al.

# **Emission Bands and Systems Components**



|                             | X-ray                                | VUV                                          | Visible                     |
|-----------------------------|--------------------------------------|----------------------------------------------|-----------------------------|
| Typical<br>plasma<br>region | Core plasma                          | Outer plasma                                 | Edge and divertor           |
| Wavelength                  | 0.1 – 10 nm                          | 2 – 200 nm                                   | 300-800 nm                  |
| Input optics                | Direct views                         | Grazing incidence<br>mirrors                 | Normal incidence<br>mirrors |
| Windows                     | Polymer and<br>Beryllium windows     | Not possible<br>Requires vacuum<br>extension | Glass, quartz etc           |
| Dispersion                  | Crystal or pulse-height              | Grating                                      | Grating                     |
| Detectors                   | CCD, Active Pixel<br>Photon counting | Channel-plate, CCD                           | CCD, CMOS                   |

R. Barnsley et al.

# **Specific Issue in Nuclear Enviroment: Radiation**



- Diagnostics need to be optimized regarding neutron flux and fluence impact:
  - Shielding, distance or not sensitive to neutrons

| Location                    | Neutron flux<br>/cm <sup>2</sup> .s | Suitable technology                                                                      | Issues                                                                                                    |
|-----------------------------|-------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Plasma - facing             | ~10 <sup>14</sup>                   | Metal mirrors<br>Retro-reflectors<br>Waveguides                                          | Deposition and erosion by plasma.<br>Maintenance: - possible if in-port<br>- remote handling if in-vessel |
| In-vessel<br>Behind blanket | ~10 <sup>12</sup>                   | Mineral-insulated cable<br>Pick-up coils for magnetics                                   | Radiation induced, EMF, currents, insulation<br>breakdown<br>Maintenance almost impossible                |
| Inside<br>port-plug         | ~10 <sup>8</sup> - 10 <sup>12</sup> | Mirrors<br>Replaceable detectors                                                         | Some maintenance possible                                                                                 |
| Behind<br>port-plug         | < ~10 <sup>8</sup>                  | Optical fibres, lenses, CCD<br>detectors, conventional<br>electronics. "Almost anything" | Relatively maintainable<br>R. Barnsley et al.                                                             |

# **Change of Design to Reduce Neutron Exposure**

#### **JÜLICH** Forschungszentrum

#### X-ray Camera - splitting fan view into several sub-views results in improvement in neutron flux at port flange



# Specific Issue in ITER: Diagnostic Port Coordination



Different diagnostics share one port – arrangement and coordination (iterative)



R. Barnsley et al.

# **Expected Range of Plasma Conditions**

- **JÜLICH** Forschungszentrum
- Wide range of plasma backgrounds modelled to reflect operational range of ITER
- Impurity emission is modelled using plasma scenarios as expected targets for diagnostics
- Impurity emission modelling is essential input to designs sets requirements for instrument:
  - Sensitivity
  - Spectral range and resolution
  - Field of view and spatial resolution
- Continuously refined and expanded
  - Wide range of plasma scenarios
  - Wide range of impurities
  - Impurity radiated power line and continuum
  - Input to all spectroscopy designs
  - Input to Bolometry design
  - Next step: time resolved simulation of plasma scenarios for synthetic diagnostics, developing and training analysis

ASTRA plasma modelling ADAS atomic data SANCO impurity transport

SOLPS solutions in divertor ERO2.0 PSI at main chamber and divertor

M. O'Mullane et al.

# Emission Modelling in VIS, VUV, SXR and in bolometry JÜLICH

- Sensitivity analysis concerning input parameters (transport) / Variety of plasma conditions
- Complete plasma discharge simulation including intrinsic and extrinsic impurities
- Energy-resolved radiated power predictions to high energies, up to HXR region
- Core, edge, divertor and SOL contributions to total radiation



#### line of sight SXR emission

M. O'Mullane et al.

# Emission Modelling in VIS, VUV, SXR and in bolometry JÜLICH

- Sensitivity analysis concerning input parameters (transport) / Variety of plasma conditions
- Complete plasma discharge simulation including intrinsic and extrinsic impurities
- Energy-resolved radiated power predictions to high energies, up to HXR region
- Core, edge, divertor and SOL contributions to total radiation



# **Example: VUV spectroscopy in ITER**



- VUV spectrometer system to identify and quantify impurities
- Impurity profiles at pedestal region

|                                         | Subsystem                 | <b>VUV Core survey</b>          | VUV Edge imaging   | VUV Divertor                          |
|-----------------------------------------|---------------------------|---------------------------------|--------------------|---------------------------------------|
|                                         | PBS                       | 55.E3                           | 55.EH              | 55.EG                                 |
|                                         | Function                  | Impurity species identification | Impurity profile   | Divertor impurit<br>influxes (W etc.) |
| Edge Imaging, Up.18<br>Divertor, Eg. 11 | Wavelength<br>range (nm)  | 2.4 - 160                       | 17 – 32            | 15 - 32                               |
| Core Survey, Eq. 11                     | Resolving<br>power (λ/Δλ) | ~500                            | ~500               | ~500                                  |
|                                         | Gratings                  | 5                               | 1                  | 1                                     |
|                                         |                           | Slot in Eq 11 PP                | Slot in Up18 PP    | Slot in Eq 11 PP                      |
|                                         |                           | 10 x 100 mm^2                   | Field mirror in PP | Field mirror in PP                    |
|                                         | Implement.                | Collimating                     | Collimating mirror | Collimating mirror                    |
|                                         |                           | mirrors in PC                   | in PC              | in PC                                 |

## **Example: VUV spectroscopy in ITER**



- Core survey system of HEXOS type with 5 channels
- 5-channel Main Plasma Spectrometers with shielding concept for MCNP analysis



# **Test of Spectrometer in KSTAR**





- Spectrometer table on the F-
- 3 m long Vacuum Extension
- Two Gate Valves
- Collimation Mirror Set
  - 1. Cylindrical 10 cm x 5 cm, R.O.C. = 13.5 cm
  - 2. Convex 10 cm x 5 cm, R.O.C. = 700 cm

#### **Example Spectra**





 Impurity lines of initial plasmas at KSTAR 2012 Campaign (2012. 09. 06)

09.05.2019

# Main Chamber H<sub>alpha</sub> System





# **Reflections for Main H**alpha **Diagnostic**





Light tools software

### **CXRS Systems in ITER**





09.05.2019

**CXRS Core System** 

5





Ph. Mertens et al.

**CXRS Core System** 





64

Ph. Mertens et al.

# **CXRS Spectral Properties and Quantities**



Line width: Ion temperature

Line shift: Plasma rotation

> Integral: Ion density



 $\lambda$ 465 nm band (He, Be) – around 468 nm  $\rightarrow$  He II, Be IV

ITER

 $\lambda520$  nm band (C, Ne, Ar, Kr) – around 527 nm  $\rightarrow$  C VI, Be II, Ne X and Ar XVII

 $\lambda$ 656 nm band (Balmer) – H<sub> $\alpha$ </sub>, D<sub> $\alpha$ </sub>, T<sub> $\alpha$ </sub> at 656 nm

- ⇒ High resolution spectrometer
- ⇒ Each lines-of-sight one spectrometer?

# **CXRS Signal Expectation**



Radiances in m<sup>-2</sup> s<sup>-1</sup> sr<sup>-1</sup> Å<sup>-1</sup>



M. De Bock et al., Overview of Active Beam Spectroscopy developments for ITER

Bremsstrahlung: 
$$B_{\text{LOS}} = \int_{\text{LOS}} dl \int_0^\infty d\lambda \, C \,\overline{g}(\lambda, T_e, Z_{\text{eff}}) \, \frac{n_e^2 Z_{\text{eff}}}{\sqrt{k_{\text{B}} T_e}} \, \frac{\exp\left(-\frac{hc}{\lambda k_{\text{B}} T_e}\right)}{\lambda^2}$$

|                        |                                                          | XRCS Edge<br>(IN-DA)<br>XRCS Core (US-DA)<br>XRCS<br>Survey<br>(IN-DA) |                                                                  |
|------------------------|----------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------|
| Subsystem              | Main plasma x-ray survey                                 | X-ray Core imaging                                                     | X-ray Edge imaging                                               |
| Function               | Impurity species identification and monitoring           | Core ion temperature, rotation,<br>impurity profile                    | Edge ion temperature, poloidal rotation, impurity profile        |
| Wavelength range (nm)  | 0.05 - 10                                                | 0.2 - 0.4                                                              | 0.2 – 0.5                                                        |
| Resolving power (λ/Dλ) | Below 2.5 nm ~1000, Above 2.5 nm ~<br>100                | ~8000                                                                  | ~8000                                                            |
| Implementation         | Slot in E11 port-plug,<br>Diffracting optic in port cell | Slot(s) in E09 port-plug,<br>Diffracting optics inside port-plug       | Slot in U09 port-plug,<br>Diffracting optic behind the port-plug |
| Wavelength, 10         | m                                                        | Wavelength (A)                                                         | 09.05.2019 67                                                    |

# Example: X-Ray Spectroscopy



#### **ITER x-ray Survey Spectrometer**





<--- ~ 10 m to slot in blanket

Slot at blanket acts as entrance slit: 10 x 100 mm<sup>2</sup>

Range of ~6 different bent crystals with Bragg angle range 30° - 60°

Wavelength coverage ~ 0.05 nm - 10 nm

Spectral resolution ~ 1000 below 2.5 nm, ~ 100 above 2.5 nm

Detectors CCD for long wavelength, Pilatus for short wavelength