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The Nuclear Schrédinger Equation
Aim: To solve the Time-dependent Schrédinger Equation for nuclei.

In the Adiabatic picture TDSE is:
2 A .0
(To+ Vi) [ ) = D Ai | i) = i | )
i

and the wavefunction moves over an adiabatic potential energy
surface, V, obtained from quantum chemistry calculations.
Non-adiabatic couplings A are singular at a conical intersection.

In the Diabatic picture TDSE is:
4 .0
[Tn1 + w} W = ih

where W is a matrix of potential surfaces and
couplings and «» a vector of wavepackets.

Worth and Cederbaum, Ann. Rev. Phys. Chem., (04) 55: 127
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Propagating wavepacket: The Standard Method

Nuclear wavefunction expanded in primitive basis set:

V(q1,...qrt) Z ZAh (1) X,1 COR X,f (ar)

=1 Jp=1

Use Dirac-Frenkel Variational Principle:

0
VIH-=|V) =
<5’ Iaz‘ > 0

to obtain equations of motion for A:

iR =308 @) X @) HI (@) xS (@) A
L

Kulander “Time-dependent methods for quantum dynamics”, Elsevier, 1991
Kosloff, Ann. Rev. Phys. Chem. (94) 45: 145
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Propagating wavepacket: The Standard Method

Nuclear wavefunction expanded in primitive basis set:

N; Ny
V(G gnt) =Y > AiOx @)1 (ar)

h=1 " jp=1

Use Dirac-Frenkel Variational Principle:

0
VIH-=|V) =
<5’ Iaz‘ > 0

to obtain equations of motion for A:

iAy =" (dy|H|dL )AL
L

Kulander “Time-dependent methods for quantum dynamics”, Elsevier, 1991
Kosloff, Ann. Rev. Phys. Chem. (94) 45: 145
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Propagating wavepacket: The Standard Method

Nuclear wavefunction expanded in primitive basis set:

Ny Ny
W(qr - ant) =3 > Ay xg(an) X (arn)
Ji=1 jp:1
Use Dirac-Frenkel Variational Principle:
0
OVIH—i—=|V) =
(ov]f=iglv) =
to obtain equations of motion for A:
iA = HA

Kulander “Time-dependent methods for quantum dynamics”, Elsevier, 1991
Kosloff, Ann. Rev. Phys. Chem. (94) 45: 145
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The Hamiltonian matrix elements

Need to evaluate matrix elements (integrals)

1 1 f
Hio o= >0 00 xR )
ly,.. 4f
1 f 1 f
= S AT v D)
Ly,...4¢

As written an N* x N' matrix of multi-dimensional integrals!

Direct Dynamics



Primitive basis

The Hamiltonian matrix elements

Need to evaluate matrix elements (integrals)

1 1 f
Hio o= >0 00 xR )
ly,.. 4f

1 f f
= S AT v D)
ly,.. 4f

As written an N* x N' matrix of multi-dimensional integrals!

Use a Discrete Variable Representation (DVR) or collocation (FFT) to
reduce effort

e KEO low dimensional integrals using analytic basis / FFT
e PEO diagonal on spatial grid - N’ points
e DVR equates to Gaussian quadrature of integrals
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The Multiconfigurational Time-Dependent Hartree
(MCTDH) Method

m N f
k=1

=1 Ji=1
Variational equations of motion for A and .

iA; = ) (Py|H|P)AL
L

(1 _ p(n)) (p(n))’1<|.|><m>¢(n)

SPFs expanded in primitive grid

i)

e non-linear equations of
motion

N
e Computer memory n’ + fnN wj= Z ajjXi
i—1

Beck et al Phys. Rep. (00) 324:1
Meyer, Gatti and Worth “Multidimensional quantum dynamics”, Wiley-VCH, 2009
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MCTDH

time-dependent matrix elements

Ho = (@u|HIo0) = (o o | HI 6 . o)

« for efficiency need product potential V = 3", csh{"h$ ...

1 1 2 2
(@1 HIy) = 3 cslpl |hD D) (0P |A@ )y
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MCTDH

time-dependent matrix elements

Ho = (@u|HIo0) = (o o | HI 6 . o)

« for efficiency need product potential V = 3", csh{"h$ ...

(@] H|y) = 3, estipl|hD D) (P @)
Using single-hole functions,

Nf—1

f—1
(f) Z Z A/1 Jr— 1kf H‘P}:)(QHvt)
rk=1

Ji=1 Jr—1=1
mean-field operators and density matrices

(™ = W HIp) o) = @i ul) = 5, A Ay



Primitive basis MCTDH ML-MCTDH Parametrised Hamiltonians G-MCTDH GWP Methods

Routes to Higher Dimensionality.
First bottleneck to larger systems is no. of configurations n’

Strategies:
| Combined Mode Particles
II Selected-Cl

[l Cascading / Multi-layer
IV Parametrized Spfs
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Routes to Higher Dimensionality.
First bottleneck to larger systems is no. of configurations n’

Strategies:

I Combined Mode Particles
[l Selected-Cl
[l Cascading / Multi-layer
IV Parametrized Spfs

Second bottleneck is calculating potential
Strategies:

A Parametrized Hamiltonian

¢ Reaction Path Model
¢ High-Dimensional Cluster Model
¢ Vibronic Coupling Model

B GROW
C Direct Dynamics
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|. Combined Mode Particles

Re-write MCTDH ansatz

ny Mp p
V(. .an )= Y A ] oM@ 1)
k=1

=1 Jo=1

A “particle” may contain more than one coordinate,
Qi = (qéh Qb7 ) qW)

Direct Dynamics



Primitive basis

|. Combined Mode Particles

Re-write MCTDH ansatz

ny Mp p
k=1

=1 Jo=1

A “particle” may contain more than one coordinate,
Qi = (qéh Qb7 ) qW)

e.g.

\U(QMQZ,QSJ) ZZAIUZ <)0]1 q1at) %0 )(Q27q37 )

2
= ZZAMZ (@) $P(Qe. 1)

MCTDH ML-MCTDH Parametrised Hamiltonians G-MCTDH GWP Methods Direct Dynamics
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MCTDH

Saving in memory

All 1D functions
Mem ~ n' + faN

Now combine d modes in each particle.
p = £ particles with grid lengths of N9
If 7 < n? save memory.

Mem ~ AP + pAN®
If d = £, then full-grid used and i = 1

Mem ~ Nf

34
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G-MCTDH GWP Methods Direct Dynamics

Saving in memory

All 1D functions
Mem ~ n' + faN

Now combine d modes in each particle.
p = £ particles with grid lengths of N9
If 7 < n? save memory.

Mem ~ AP + pAN®
If d = £, then full-grid used and i = 1
Mem ~ N’

Result: MCTDH can treat ca 30 modes

Bench Mark: Pyrazine Spectrum

1.0

0.8

Intensity
o
o

o
IS

0.2
0.0 =" Ve
220 240 260 280
wave length [nm]
e full 24D QD

e 650 MB
(205 MB good result)

e ca2 x 10?2 MB for
“standard”

Raab et al JCP (99) 110: 936
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ML-MCTDH

Routes to Higher Dimensionality.
First bottleneck to larger systems is no. of configurations n’

Strategies:

| Combined Mode Particles
[l Selected-Cl

[l Multi-layer
IV Parametrized Spfs

Second bottleneck is calculating potential
Strategies:

A Parametrized Hamiltonian

¢ Reaction Path Model
¢ High-Dimensional Cluster Model
e Vibronic Coupling Model

B GROW
C Direct Dynamics
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ML-MCTDH

Multi-Layer MCTDH (ML-MCTDH)

Expand a multi-mode SPF in an MCTDH expansion to create layers:

n Np P
V(g..qnt) = > ) A ]]eM(@Q ) Layert
=1 Jp=1 r=1
ny Nnq ) Q
pNQet) = Y B (][R Layer2
ki=1 ko=1 v=1

(R = D ZC,’:",H(t Hg@ (Sc,t)  Layer3
h=1  Ig=1

Each layer acts as a set of SPFs for the layer above and a set of
coeficients for the layer below.

Leads to a recursive sets of variational equations of motion:

Wang and Thoss JCP (2003) 119; 1289

11
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Primitive basis MCTDH ML-MCTDH

L

G ]

S -]

- =2
9

Borelli et al Mol. Phys. (2012) 110: 751

Parametrised Hamiltonians

G-MCTDH GWP Methods

D (PylH|PL)AL

I'gb('i) _ (1 _ P(H)) (p(m)>_1 <H>(K)<,D(H)
(

135 Mode Quantum Dynamics
Photo-induced ET. Spin-Boson Model.

150 200 250 800 350 400
time (19

)

Direct Dynamics
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Routes to Higher Dimensionality.
First bottleneck to larger systems is no. of configurations n’

Strategies:

| Combined Mode Particles
[l Selected-Cl
[l Cascading / Multi-layer
IV Parametrized Spfs

Second bottleneck is calculating potential
Strategies:

A Parametrized Hamiltonian

¢ Reaction Path Model
¢ High-Dimensional Cluster Model
¢ Vibronic Coupling Model

B GROW
C Direct Dynamics

Direct Dynamics
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A Simple Hamiltonian: The Vibronic Coupling Model

Assume diabatic basis: qua YWa(r; Q)

H(Q) = T(Q) + W(Q)

T, + V0= & + QP
o @ 802

Wos = (talHeiltg)
0
Wosg ~ Vias+ea+) 50, ValHelts) Qi+ ...
. 1
I

Koppel et al Adv. Chem. Phys. (1984) 57: 59
Worth et al, Int. Rev. Phys. Chem. (08) 27: 569
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A Simple Hamiltonian: The Vibronic Coupling Model

Assume diabatic basis: Zgba YWa(r; Q)

H(Q) = T(Q) + W(Q)
5 0 0 >
Tt Vo= (802 +Q >
Wasg = (YalHelts)

0
V2(5a5 +éa+ Z 87@<1/1a|Hel|1/)ﬁ> Qi+
\_v_/

’/

ki, \i #£0 if I'axr,-xI'BQA1

X
=
L

Koppel et al Adv. Chem. Phys. (1984) 57: 59
Worth et al, Int. Rev. Phys. Chem. (08) 27: 569
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Heteroaromatic Photodissociation

_H
" w i
N7 N
W
WY
Imidazole Pyrrole Phenol
sr \/ e, S,
5 'no*, S,

Energy (eV)
©

1.0 0 10 2.0

15 15
Ruu (A) Rou (A)

Ashfold et al Science (06) 312: 1637

Excitation to =7* states
Dissociation after crossing to wo* states
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Primitive basis

Electronic Absorption Spectrum of Pyrrole

MCTDH

ML-MCTDH

Parametrised Hamiltonians

G-MCTDH

GWP Methods

Direct Dynamics

B B Total
By(nr)
B,(3py) ——
Dg C_ EM) ,
F |~
A N I L
° N\
A
L2 L 65 56 45.3 6 6.2 6.4
energy (V) Energy (eV)
Symmetry Character CASSCF CASPT2
A4 0.00 0.00
Az 3s/mo* 417 5.06
B 3s/mo* 4.87 5.86
Az 3p: 4.91 5.87
A4 Tr* 6.47 6.01
Bo T 7.83 6.24
B 3p: 5.67 6.69

S.P. Neville & G.A. Worth, JCP, 2014, 140, 034317
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Primitive basis MCTDH ML-MCTDH Parametrised Hamiltonians

Electronic Absorption Spectrum of Pyrrole

B B Total
By(an)
B,(3p,) ——
b E M)
CrE
F
A
5.5 6.0
enoray (oV) Energy (eV)

6-state, 9-mode model.

lower lying Rydberg states.

S.P. Neville & G.A. Worth, JCP, 2014, 140, 034317

G-MCTDH

GWP Methods

Direct Dynamics

Ensrgy ()

Strong vibronic coupling between states.
Contribution from excitation to three states.
Intensity borrowing allows excitation to

zzzzzzzz
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Pyrrole: 6-State 9(10)-Mode Model

Ignoring v
State populations

o
&
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Pyrrole: 6-State 9(10)-Mode Model

Ignoring v» Including v»
State populations State populations

rrrrrr

ssocinion

“Trapped”
“Geometry”
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Routes to Higher Dimensionality.
First bottleneck to larger systems is no. of configurations n’

Strategies:

| Combined Mode Particles
[l Selected-Cl

[l Multi-layer
IV Parametrized Spfs

Second bottleneck is calculating potential
Strategies:

A Parametrized Hamiltonian

¢ Reaction Path Model
¢ High-Dimensional Cluster Model
e Vibronic Coupling Model

B GROW
C Direct Dynamics
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G-MCTDH

IV. Parametrized Spfs (G-MCTDH)

p
V(Q,...,Qxt) Z ZAh (1) H‘P; I1 g/'(:)

=1 jp=1 w=n+1
Replace single-particle functions with Gau33|an functions
g(Q, 1) = exp (Q7¢,Q+Q"¢; + 7))
Propagate parameters A = {¢, &, n}

p

IA/ = ZS Cbk|H|¢'/ A/ ZZISIk1 gk'atg/

k=1 I=1

= Z S/k Hk/A/ Z Z IS/k Tk/AJN

k=1 I=1
= c‘Y

Burghardt et al JCP (99) 99:2927
Burghardt et al JCP (08) 129:174104

19
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G-MCTDH

ADVANTAGES

o Need more GFs than SPFs,
o BUT set of parameters smaller than no. of grid points
e spatially unrestricted

20/34



G-MCTDH

ADVANTAGES

o Need more GFs than SPFs,
o BUT set of parameters smaller than no. of grid points
e spatially unrestricted

DISADVANTAGES

o Non-orthogonal basis set - numerically difficult

o Efficiency requires approximate integral evaluation
LHA V= V(x)+ V'(x —x0) + V"(x — x0)?
e convergence on exact result depends on accuraccy of integrals

20/34
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General Scheme

G-MCTDH gives general framework for Quantum — semi-classical —
classical dynamics. Can also treat open systems using density matrix
formalism.

Environment

Classical

Semi-classical

Quantum
(Grid)

(Coupled GWPs;

(Uncoupled GWPs)

21/34



GWP Methods

Grid-based QD — Gaussian Wavepackets

In limit of only GWP basis functions G-MCTDH becomes the
Variational Multi-configurational GWP Method: vMCG

V(X 1) =Y Aygu(x,t)
J

GWPs long-tradition in time-dependent QD.

e Conceptually simple
e Can be related to semi-classical dynamics
e possible to use for direct dynamics

BUT

e numerically unstable
e convergence properties not clear - no “natural population”
e limited to rectilinear coordinates

22/34



GWP Methods

vMCG Equations of Motion

m
W(Qr,....Qnt) =) At
j=1
Replace single-particle functions with Gaussian functions

g(Q, 1) =exp (Q7¢,Q+ Q"¢ + ;)

Propagate parameters. For expansion coefficients A = {¢,&,n}
IA] = Z 81;1 [Hk/ — iTk/] Al
Ik
and for the linear parameters, &3 = —2(;33qi3 — P13 can be written

. P
Qs = iJF@ m Y Cima Yma

mao

b = —Viy+Re Y Gty Vo
mao

Burghardt et al JCP (99) 99:2927 Burghardt et al JCP (08)-129:174104
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Salicylaldimine Test Case: 2D Proton transfer
Hamiltonian in normal modes fitted to

RHF/3-21G*
w, (92 2 4 Q O Q o
K n y P
H = Z—(—2+qn>+2Anq1 oe o oe o
£ 2 \0g2 — [ & —o 09
~k=1,18 n=1 a
) % @ ®o o0 ®°
+Bi1GiGis + Ba2 G G e o e
© -
3 3
+Bs1g7q1s + B13q1qys
V18
2D Salicylaldehyde Proton Transfer Flux: Full QD
0.15 . . . .
0.1 -
0.05 o
| 0
-0.05 A
01 A
0.15 T T T T
0 20 40 60 80 100

Time [fs]
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Salicylaldimine Test Case: 2D Proton transfer
Hamiltonian in normal modes fitted to

RHF/3-21G*
H o= Zw”(a +q>+qu ‘o¢ o || ‘e o
= > nQ1 o ¢
S 2 \OGR o 9@ —o &€
’ oe 9° | o0 ®°
+B11Gi1Gis + B22Gi Gis > Y
@ 4 ©
+Bs1Gi Gis + Bi3q1 Qs
V18

2D Sallicylaldehyde Proton Transfer Flux: Full QD v GWPs

0.15

Flux

-0.15 T T
60 80 100

fmetel 16 /32 GWPs

T T
0 20 40
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Trajectories with 16 GWPs
VMCG Classical

GWP centre coordinate 16 classical GWPs

W centre coordinate 16 GWPs
.
2
Z o
3 ,
)
.
0 P 0 w0 !
0 P 0 w0 ao 10 Time ]
Time [fs]
‘GWP trajectory in phase-space 16 classical GWPs
WP ulectry i phase-space 16 GWPs s
8 6
6 4
4 2
3 Eo &= (©
E 0 = -2
H
2 4
-4 -6
. s
. s i 2 o 2 i
B vt

v1 [au]

Richings et al Int. Rev. Phys. Chem. (15) 34: 269
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Primitive basis

Autocorrelation function:

Ico!
°
N

MCTDH

ML-MCTDH

Parametrised Hamiltonians

G-MCTDH

GWP Methods

4D model: Linear Coupling

State Populations:

Direct Dynamics

Full QD. Full QD.
14 .
AN
\ PR .
0.8 \ \ // .
\ /
06 \ / /
o >< _
é ~
0.4 / N\
c /N .
| \
| /N
J 0.2 / - VV:/ NG
N
™ 0+ - - - - -
50 100 150 200 0 20 40 60 80 100 120
Time [fs] Time [fs]

QD basis size: 4060 SPFs, 355,000 primitives
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4D model: Linear Coupling
Autocorrelation function: State Populations:

Full QD v 20, 20 GWPs.

Full QD v 20, 20 GWPs.

Ico!
o
N

Pop

N c

\
) N
005 \/1‘ | \\ fﬂﬂ\\,\a N ‘A‘ / L \“L “
05 1 \ )W N\
A% ¢ “v) &'/ ' f\‘ﬁw\ﬁf
200

0 50 100 150
Time [fs]

Time [fs]

QD basis size: 4060 SPFs, 355,000 primitives
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4D model: Linear Coupling

Autocorrelation function: State Populations:
Full QD v 40, 40 GWPs. Full QD v 40, 40 GWPs.

04 17 . . .

035 1 ‘

03 ‘

0.25 4 ‘
g o24| 7 g

015 ‘\‘ ‘ A M |

SN A

0.05 b j ,“"‘ ’\ W ) ‘

0 J 7 \/ A 1 \}f
0 50 100 150 200
Time [fs] Time [fs]

QD basis size: 4060 SPFs, 355,000 primitives
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4D model: Linear Coupling
Autocorrelation function: State Populations:

Full QD v 50, 50 GWPs.

Full QD v 50, 50 GWPs.

Ico!
o
2 o
[ZI N
—
Pop

001 U Yavi %M\,»“M\N/A\“ el
0 200

0 50 100 15
Time [fs]

N

0 20 40 60 80 100 120
Time [fs]

QD basis size: 4060 SPFs, 355,000 primitives
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Primitive basis MCTDH ML-MCTDH Parametrised Hamiltonians G-MCTDH GWP Methods Direct Dynamics

4D model: Linear Coupling

Autocorrelation function: State Populations:
Full QD v 60, 60 GWPs. Full QD v 60, 60 GWPs.
0.4 ‘ L L L 1 L n \ L
0.35 4 ‘

03 ‘ 08 h W

;)_2 | “ 06 b

015 A “ /"\ (/” n f 04 N
1 — | Jf

o I j N / \ J 02 : L

0.05 1 \ \/ \/J \/, L\wﬁv“ \’7(\ \W\f'wm [ _

0 50 100 150 200 0 20 40 60 80 100 120
Time [fs] Time [fs]

Icwl

Pop

QD basis size: 4060 SPFs, 355,000 primitives
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Routes to Higher Dimensionality.
First bottleneck to larger systems is no. of configurations n’

Strategies:
| Combined Mode Particles
II Selected-Cl

[l Cascading / Multi-layer
IV Parametrized Spfs

Direct Dynamics
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Primitive basis MCTDH ML-MCTDH Parametrised Hamiltonians G-MCTDH GWP Metho

Routes to Higher Dimensionality.
First bottleneck to larger systems is no. of configurations n’

Strategies:

| Combined Mode Particles
[l Selected-Cl
[l Cascading / Multi-layer
IV Parametrized Spfs

Second bottleneck is calculating potential
Strategies:

A Parametrized Hamiltonian

¢ Reaction Path Model
¢ High-Dimensional Cluster Model
¢ Vibronic Coupling Model

B GROW
C Direct Dynamics

ds

Direct Dynamics
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Direct Dynamics

Direct Dynamics

« For integrals (gj|H|gk), Quantum chemistry to second order.
o Gradients and Hessians directly from quantum chemistry.
e Store results in a database (energy, gradient, Hessian)

Ideally use adiabatic PES in direct dynamics as they are readily
available from quantum chemistry packages.

o States interact via the non-adiabatic coupling terms (NACT)

(| V [ 106)

Fab = Vb — Va

e NACTSs go to infinity at a conical intersection and adiabatic PES
become non-differentiable at such points.

Problem for LHA. Avoid these problems by transforming to the
diabatic picture.

28/34
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Direct Dynamics

« For integrals (gj|H|gk), Quantum chemistry to second order.
e Gradients and Hessians directly from quantum chemistry.
e Store results in a database (energy, gradient, Hessian)

Ideally use adiabatic PES in direct dynamics as they are readily
available from quantum chemistry packages.

o States interact via the non-adiabatic coupling terms (NACT)

(| V [ 106)

Fab = Vb — Va

e NACTSs go to infinity at a conical intersection and adiabatic PES
become non-differentiable at such points.

Problem for LHA. Avoid these problems by transforming to the
diabatic picture. How can we define diabatic states on-the-fly?

28/34
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Diabatisation by Propagation
Adiabatic - Diabatic transformation, S, defined by

VS = —FS
where F is NACT. Exact for complete set of states.

e Choose S = 1 at the initial point of the propagation.
o Solve for S by propagating from the nearest point.
o Applicable to any number of states.

First test: Butatriene ionisation s

S w0
> 95
o

aas GO
J 2 1

e Dynamics run on first-excited ion states.
e DD-vMCG using 25 GWPs with propagated diabatisation.
e Powell updated Hessian

Richings and Worth J. Phys. Chem. A (2015) 119: 12457

Direct Dynamics
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Formamide

Smallest stable molecule consisting of HCNO
Prebiotic Earth

Found, by spectral molecular survey, on Hale-Bopp
Tentatively found in IR-spectra of interstellar ices

Decomposition pathways studied but as yet, no

excited state studies
SA-CAS(10,8)/6-31G*

H

- oo

State VEE/eV T Dipole/au Character
Sy 5.607 0.000 Olp-7*
S, 8.015 0.000 m-NH3
S;  8.159 0.022 Olp-NH3 + 7r*
S, 9.118 0.000 m-NH3
Ss  10.033 0.071 Olp-NH3
S¢ 10.574 0.726 mr* + Olp-NH3
S;  11.450 0.001 7-NH} + mr*

Direct Dynamics

NC.__NH, N7
‘ k\N | N/>
NC” NH; 5A

Y ¢ - HNC+H,0 [ > 5B
Loy HONHO NC” N o
3 , 4B HN N
i i |
2 H SN
(o3} N
H 5C
HN Y N> 2 u
LN N
N
RN MY T
HN N7 N
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Formamide: Direct Dynamics 48GWP

Diabatic Populations

w2 12
* *
Si(Olpr*) 1 = So(mm*)
08{ 08
§ S~ §
LI g LY
& ~— 3
04 . 04
TTN—
0 02
P . /—/\ S SN
0 - o
c ® ® ® & % 5w » o o %
Tmots —

Product Analysis: Weight GWP trajectories ending in a particular
channel by Gross Gauassian Population

GGP; = ) _ Re (A1 SjA)

" e — ¥ T
* — e — *
Si(Olpr*) - oo : rere— | Sp(mm™)

c-0
OCN + HeHH

> —
g 08 OHC+ NH2 ——
3 H1
5 06
g
g os
H2
02 02

0 20 40 60 80 100 120 140 160 0 10 20 3 4 5 6 70 8
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Conclusions

Variational time-dependent basis sets are a powerful way of obtaining
the full solution to the TDSE.

e MCTDH provides a complete framework for quantum dynamics.
e ML-MCTDH grid-based for truly large systems - simple PES
e G-MCTDH flexible route to approximate dynamics - any PES but
restricted coordinates
¢ G-MCTDH — vMCG — GWP methods

o still complete solution possible, allows evaluation of accuracy
e numerically difficult
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Direct Dynamics present state-of-the art: DD-vMCG

e Global PES produced. Can be used for later refinement
¢ General diabatisation by propagating ADT matrix
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e numerically difficult

Direct Dynamics present state-of-the art: DD-vMCG

e Global PES produced. Can be used for later refinement
¢ General diabatisation by propagating ADT matrix

Present bottleneck: Electronic Structure theory!
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