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Outline 
1. Electronic resonances: What are they and  
why they are important in chemistry. 
2. Theoretical approach:  Non-hermitian QM using  
CAP and EOM-CC.  
3. How to make sense of resonance wave  
functions? Extension of Dyson orbitals  to metastable 
domain. 
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transition orbitals for resonance wave- 
functions. 
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Autoionizing states: Lie above ionization/
detachment continuum

1. Transient anions: N2-, CO-, uracil-, etc. 

2. Excited states (including core-excited) 
above ionization continuum. 

3. Core-ionized and doubly ionized states. 

Finite lifetime, decay via auto-ionization/ 
detachment. Have distinct spectroscopic signatures. 
Their wave-functions are not L2-integrable.   
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FIG. 1. Lowest vertical excitation (S1) and detachment energies (D0, Dn )
for model photoactive yellow protein (PYP) chromophores in the phenolate
(left) and carboxylate (right) isomeric forms. The energies are in eV; these
are the best estimates from Ref. 14. The character of the resonance state is
different in the two isomers. In the phenolate, where electron detachment
from S1 to the lowest detachment continuum is a Koopmans-allowed one-
electron transition, the excited state is a shape resonance. Carboxylate, in
which the electron detachment from S1 to D0 is a Koopmans-forbidden two-
electron process, is an example of a Feshbach resonance.

and can only be coupled to the continuum by two-electron
excitations. For example, an A′ excited state that lies above
A′′ continuum (such as ππ* state in the carboxylate form
of PYP), is completely decoupled from the continuum at the
CIS (configuration interaction singles) level. However, at the

FIG. 2. CIS calculations of the excited states of the phenolate form of the
PYP chromophore. In a small basis set, which is not capable of represent-
ing continuum states, the ππ* transition (shown in red) appears as an iso-
lated eigenstate and its energy approximates the position of the resonance. As
the basis set is increased, numerous pseudo-continuum states appear below
the resonance, making it more and more difficult to compute sufficiently large
number of states such that the resonance is also included.22 Moreover, the tar-
get state of interest begins to mix with pseudo-continuum states loosing its
oscillator strength. In sum, standard excited-state methods are not capable
of yielding converged (with respect to the basis set) positions of the auto-
ionizing resonances and their lifetimes. The symmetry-decoupled Feshbach
resonances, such as the ππ* state in the carboxylate form of PYP, are uncou-
pled from the continuum at the CIS level and their positions can be computed
by standard approaches.

higher levels of theory, such as equation-of-motion coupled-
cluster with single and double substitutions (EOM-CCSD), a
weak coupling is present in the calculation.

There are three different computational strategies for
resonances.18, 19 The first one is grounded in Hermitian
quantum mechanics and entails using time-dependent
framework,23–25 stabilization techniques,26–28 Stieltjes-
Tchebycheff approach,29 or computing resonance energies
as poles of scattering matrix.30 The second approach is to
impose pure outgoing boundary conditions for the standard
molecular Hamiltonian.18, 19 The third strategy is based on an-
alytic continuation of the Hamiltonian to the complex plane,
e.g., via complex scaling17, 18, 31–33 or complex absorbing
potential (CAP)34, 35 approaches.

Following second approach, the so-called Siegert formal-
ism, one arrives to an exponentially decaying in time eigen-
state and a complex eigenvalue associated with it,

ψres(r, t) = φ(r)exp(−iEres t), (1)

Eres = ER − i$/2, (2)

where ER is a resonance position and $ is a resonance width
($ = 1

τ
, where τ is a lifetime).17, 19, 21, 36 φ(r) resembles a

bound-state wave function inside interaction region (usually,
some sort of a potential well), but is exponentially diverging
outside. Alternatively, an identical energy expression can be
derived by using a diabatic representation37 in which reso-
nances are described as bound states coupled with the con-
tinuum and by applying a partitioning technique leading to a
non-Hermitian effective Hamiltonian.38

Complex scaling and CAP approaches provide a link
between quantum chemistry methods developed for bound
states and resonances such that the resonance wave function
is obtained as a square-integrable eigenfunction of a modified
non-Hermitian Hamiltonian (complex-scaled or augmented
by CAP). The CAP methods, in which complex potential
−iηŴ devised to absorb the diverging tail of the resonance
wave function is added to the Hamiltonian, were originally
developed for shape resonances, and a special care should be
taken when the approach is used for Feshbach resonances.39

Moreover, CAPs give rise to reflections, and, consequently,
the eigenvalues of the modified Hamiltonian coincide with
the resonance poles only in the limit of the zero CAP strength
(even in the complete one-electron basis set).40 Several ap-
proaches for construction of reflection-free CAPs have been
suggested.39–41

Complex scaling formalism17, 18, 31–33 is an elegant and
mathematically rigorous way to deal with the excited states
embedded in the continuum (it can also be used for nuclear
scattering problem). By scaling all electronic (and, in princi-
ple, nuclear) coordinates by a complex number eiθ (dilation
transformation), one arrives to a non-Hermitian Hamiltonian
operator that has the same discrete spectrum as the unscaled
operator and whose continuum states are rotated into the com-
plex plane by 2θ exposing the resonances, as illustrated in
Fig. 3. Under this transformation the resonance wave func-
tion becomes L2-integrable, provided that angle θ exceeds a
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Metastable auotionizing states in nature and 
technology

The visible Universe is 99.999% plasma (stars).  
High energy environments (e.g., fusion reactors, plasma reactors). 
Radiolysis, DNA damage by slow electrons proceeds through metastable electron-
attached states. 
Interactions of molecules with metals (e.g., electrodes). 
New chemistry:  Plasmonic catalysis, plasma+solvent electrochemistry;  using 
plasma for pollution control to remove NOx and SOx (engines, power plants). 
Also: new light sources and experiments. 
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techniques based on plasmas “in” and “in contact with” 
liquids have rapidly grown as the transfer of chemi-
cal species across the gas/liquid interface opens up new 
opportunities for chemical processing. In this paper, we 
overview recent advances in the areas of chemical pro-
cessing and chemical analysis as well as understand-
ing the complex interface between a plasma and liquid. 
In particular, we discuss recent work by the authors’ 
group aimed at deciphering the fundamental interfacial 
processes that occur, focusing on efforts to understand 
electron transfer reactions. Such fundamental advances 
will play a critical role as plasma–liquid technologies 
continue to develop and new opportunities for catalyst-
free electrochemistry emerge. For the purposes of brev-
ity, we will focus on plasmas “in contact with” liquids, 
often called glow discharge electrolysis. We leave out any 
extensive discussion on plasmas “in” liquids, often called 
contact glow discharge electrolysis, and point the reader 
to other works, such as the review by Gupta [4].

2  Background

2.1  History of Plasma–Liquid Studies

Plasmas in contact with liquids have played an impor-
tant role in scientific discovery and technology for cen-
turies. Dating to at least the late 1700s with the work of 
Cavendish, and including the likes of Priestly, Rayleigh, 
and Ramsay, arcs generated over water have been used to 
understand the composition of air [5] and have also played 
a critical role in the discoveries of argon (Ar) [6] and ozone 
 (O3) [7]. They also have a long history in chemical process-
ing, and in the late 1800s, Birkeland and Eyde used arcs 
over water for the industrial production of nitrogen-based 
fertilizers [8]. Similarly, the likes of Gubkin [9] and Kle-
menc [10] among others in the later 19th and early twenti-
eth centuries used plasmas to produce colloidal silver (Ag) 
particles and hydrogen peroxide  (H2O2), respectively.

While there are many configurations that can be used for 
bringing the reactive species from a plasma into a liquid 
[11], of prime interest in this work is conditions where the 
liquid itself serves as a conductive element in a direct cur-
rent (DC) plasma circuit (Fig. 1b). Typically, one electrode 
is submerged and the other is suspended over the solution, 
rather than being submerged. By applying a high voltage 
between the electrodes (~kV), the interstitial gas between 
the liquid and the suspended electrode breaks down to form 
a conductive plasma.

This simple configuration is analogous to two standard 
circuits. From a plasma perspective, it represents the clas-
sic glow discharge configuration, which typically consists 
of two electrodes operated under DC conditions in a vac-
uum tube, and is a non-equilibrium plasma, which means 
that the gas and ion temperatures are much lower than the 
electron temperature. While sustaining a glow discharge at 
atmospheric pressure is ostensibly difficult as gas heating 
leads the plasma to become thermal, recent strategies such 
as miniaturization (so-called microplasmas) have overcome 
these limitations [12]. Using a liquid as the counter-elec-
trode is particularly useful because its high heat capac-
ity helps keep the plasma relatively cool. From the liquid 
perspective, the plasma configuration resembles that of 
an electrolytic cell where one of the electrodes has been 
replaced by a plasma. For this reason, this field is often 
referred to as plasma electrochemistry. Depending on the 
orientation, the plasma is the anode in the electrolytic cell 
as shown in Fig. 1b, left (that is, the liquid is the cathode to 
the plasma) or the plasma serves as the cathode as shown 
in Fig.  1b, right (with liquid acting as the anode to the 
plasma).

These types of plasma–liquid configurations were stud-
ied extensively by Hickling and his co-workers over a 
nearly 25 year period in the mid-twentieth century (largely 

(a)

(b)

Fig. 1  a Schematic of the plasma–liquid interface and the reactive 
species that dissolve from the plasma phase into the liquid phase, 
inducing many reactions. b Schematics of typical DC plasma–liquid 
configurations as an electrolytic cell (left). The plasma anode (liquid 
cathode) configuration (right). The plasma cathode (liquid anode) 
configuration

Author's personal copy

Rumbach and Go, Topics in Catalysis,  Springer (2013)
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water, it did not fully resolve whether other plasma-gen-
erated species are important. We explored this by study-
ing the competition between plasma-induced electrolysis 
and other plasma–liquid effects using the model system 
of aqueous sodium chloride (NaCl) [55]. In a conven-
tional electrochemical cell, electrolytic reactions in aque-
ous NaCl produce chlorine gas  Cl2 in addition to  H2 and 
 O2. In particular, in addition to the water electrolysis 
reactions, a second reaction occurs at the anode via

The net result of this competition is an excess of  (OH−)aq 
in the solution such that not just the local but the bulk pH 
increases. This is the classic chlor-alkali process used com-
mercially to produce sodium hydroxide (NaOH). However, 
as noted earlier, the plasma generates a wide variety of 
reactive neutrally charged radicals. Thus, in addition to the 
electron transfer needed to maintain the DC plasma current, 
these neutral plasma species also dissolve into the solution. 
In particular, in nitrogen/oxygen-rich environments such as 
air, the plasma forms nitric oxides  (NOx), and these plasma 
products dissolve into the solution to form nitrous  (HNO2) 
and nitric  (HNO3) acid by way of

Thus, the dissolved plasma species will decrease the pH 
of the bulk solution, in direct competition with the chlor-
alkali process that increases the pH. Additionally,  H2O2 is 
also produced which is weakly acidic. The NaCl system, 
therefore, is a nice platform to study how both electrolytic 

(3)2(Cl−)aq →
(

Cl2
)

g
+ 2e−.

(4a)NO + NO2 + H2O → 2HNO2;

(4b)2NO2 + H2O → HNO2 + HNO3 .

and dissolved plasma species compete during plasma–liq-
uid interactions.

In order to resolve these effects, we varied the gas envi-
ronment in the headspace above the solution where the 
plasma was formed [55]. In nitrogen-free environments, 
such as pure Ar and pure  O2, the pH should increase as 
electrolytic processes dominate. In nitrogen-rich environ-
ments, such as pure  N2 and air, the pH should decrease due 
to Reactions (4a) and (4b). Figure 6 shows the pH as a func-
tion of the plasma processing time along with pH measure-
ments for a conventional electrochemical cell using a solu-
tion of 0.34  M NaCl. As expected, for the conventional 
electrochemical cell, there is only the chlor-alkali pro-
cess and the pH increases. Further, the pH also increased 
for the pure Ar and pure  O2 gas environments, although 
the increase was slightly smaller than that observed for the 
conventional cell. The reason is that even in the absence of 
 N2,  H2O2 is formed and is slightly acidic lowering the pH. 
The presence of  H2O2 was subsequently confirmed using 
chemical assay analyses. In contrast, when the plasma was 
formed in pure  N2 and air, the pH decreased significantly 
as  HNO2 and  HNO2 were generated, which was confirmed 
via ion chromatography. Curiously, the pH decrease was 
greater for pure air than for  N2. The reason for this discrep-
ancy is that  NOx formation requires oxygen, which is not 
theoretically present in a pure  N2 plasma. Here, the oxygen 
comes from  the oxidation reaction at the anode that com-
pletes electrolysis. That is, in pure  N2, the production of 
 HNO2 and  HNO3 is inherently limited by the electrolytic 
processes required to produce  O2. Thus, while the electro-
lytic and dissolved plasma species can compete with each 

Fig. 5  Photograph of pH-sensitive dye used to visualize plasma-
induced reduction reaction at the interface of a plasma cathode and 
liquid anode. Copyright 2014 IEEE. Adapted, with permission, from 
[54]
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Fig. 6  Measured pH change for various plasma processing times 
when the plasma is formed in different gas environments (Ar,  O2, 
 N2, and air) as well as that for a conventional electrochemical cell. 
Reprinted with permission from [55]. Copyright 2013 American 
Chemical Society
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Simons, J. Phys. Chem. A, 112, 6401 (2008); 
Herbert,  Reviews in Computational Chemistry, 28,  391 (2016).

New chemistry facilitated by resonances via 
dissociative electron attachment 

Electrons can break bonds and act as catalysts. 
We need new theory to develop new technologies.

In addition to the study outlined above, this author’s group
also examined how an electron might attach directly to the PdO
π bond of a phosphate group295 and subsequently rupture a
phosphate-sugar OsC bond to cause a strand break using the
model compound shown in Figure 7.18. We also looked at
situations analogous to the phosphate-sugar-base model
discussed above but with a thymine base in place of cytosine.296

Finally, we considered297 the π-stacked CCC codon shown in
Figure 7.19 with an electron attached to the central cytosine
base but with two other cytosine bases above and below. In the
thymine, phosphate, and CCC electron-attachment studies, the
barriers to CsO bond cleavage were determined for the case
where no stabilizing solvation is present when a range of
solvation environments are operative. The primary findings of
all of these studies were the barriers to CsO bond cleavage,
since they determine the rates at which SSBs can occur by this
mechanism, and in all cases, we determined that it is the
sugar-phosphate CsO bond that has the lowest barrier to
breaking. Subsequent to most of these theoretical studies,
experiments from Professors Léon Sanche and Paul Burrow
showed298 that indeed it is primarily the sugar-phosphate CsO
bonds that are cleaved when electrons enter DNA base π*
orbitals.

Professor Fritz Schaefer’s group299 also studied the attachment
of low-energy electrons to DNA fragments consisting of a

base-sugar-phosphate unit. In Figure 7.20, we see the kind
of processes they studied. The Schaefer group concluded that
the lowest-energy attachment occurred at the base π* orbitals
and that both sugar-phosphate C-O and base-sugar N-C
bonds could be cleaved, and they put forth a very interesting
mechanistic proposal for how base release can occur in these
situations.

In section 4, we learned about the roles of Coulomb
interactions in destabilizing the electron binding strength of
anionic sites and in producing repulsive Coulomb barriers that
act to restrain an electron from being ejected. In the experiments
and theoretical simulations of electrons bound to DNA discussed
above, it is important to keep in mind the role of the Coulomb
potential generated by the phosphate groups. In most of the
DNA-related samples treated above, the phosphate groups have
been neutralized (by counter cations or otherwise). This means
that attachment of an electron, for example, to a base π* orbital,
is not affected by Coulomb repulsion. However, in living
systems, the phosphate groups have an electrostatic environment

Figure 7.15. Energies of the unsolvated neutral (b) and anion (O) DNA fragments and of the aqueous neutral (1) and anion (3) as functions of
the sugar-phosphate C-O bond length (Reprinted with permission from ref 292. Copyright 2002 American Chemical Society).

Figure 7.16. Qualitative plots of the π* (red) and σ* (black) diabatic
anion energy states as well as of the neutral state as functions of the
C-O (or N-H or N-C) bond length R.

Figure 7.17. Singly occupied molecular orbital of DNA fragment for
C-O bond lengths near equilibrium (top) and as C-O bond is ruptured
(bottom) (Reprinted with permission from ref 292. Copyright 2002
American Chemical Society).

Review Article J. Phys. Chem. A, Vol. 112, No. 29, 2008 6499

Bond dissociation energy
Electron energy



Resonances in non-Hermitian QM 

Resonances can be described as discrete 
L2-integrable states with complex energies  

resonance energy

Non-Hermitian QM:  
Outgoing boundary conditions, Feshbach (diabatic) formalism, 
and complex-variable approaches.

resonance width (~1/lifetime)

Reviews and books: Reinhardt Ann. Rev. Phys. Chem. 33 232 (1982);  Moiseyev, 
Non-Hermitian quantum mechanics; Cambridge University Press, 2011. 



Complex absorbing potential (CAP) approach  

H(η)=  Hmol - iηW(R),  
where W(R) is a box-like potential 

Jolicard, Austin, CPL 121 106 1985; Riss, Meyer, J. Phys. B 26, 4503 (1993) and J. Phys. B 28, 1475 
(1995); Sommerfeld, Cederbaum, PRL 80 3723 (1998); Sajeev, Vysotskiy, Cederbaum, Moiseyev, JCP 131 
21102 (2009). 

Our impl-n: Jagau, Zuev, Bravaya, Epifanovsky, Krylov, JPCL 5, 310 (2014); 
Zuev, Jagau, Bravaya, Epifanovsky, Shao, Sundstrom, Head- Gordon, JCP 141, 024102 (2014). 

- CAP absorbs tails of diverging wave function; 
- Eigenstates of H(η) - complex energy of the resonance ER; 
- Eres depends on the strengths of the potential; 
- Exact Eres  and Gamma are obtained in the limit η->0 (in the complete 
basis set).

Complex Absorbing Potentials!
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stationary state with a complex energy. It would thus be extremely beneficial if
one could calculate this stationary state without the need to solve the TDSE,
i.e., propagate a wave packet in time. This is the goal of the forthcoming
section.

3.1. Expansion of localized functions in terms of scattering states
Consider the stationary solutions of the TISE for the perturbed potential, see
Figure 1.1b. Explicitly the solution of the following eigenvalue equation:

�
�1

2
⇤2

⇤x2
+ V(x)

⇥
⇥(x) = E⇥(x). (24)

The bound state of the unperturbed system (� = 0), see Figure 1.1a, becomes
a superposition of the eigenstates of the perturbed system (� = 0.05) when
we etch the potential at the asymptotes. We may attempt an analysis of the
evolving wave packet based on the the eigenstates of the new problem. Since
the potential is now unbound, it supports only a continuum of scattering
states ⇥E . Figure 1.8 portrays several continuum eigenstates of the Hamilto-
nian. As can be seen, the vast majority of the continuum eigenstates have
a very small amplitude inside the potential well. We can label these as ⇥out

E
.

In a sharp contrast, some of the continuum eigenstates are highly localized
inside the potential, as can be seen in the solid line in Figure 1.8, and in fact

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

x [a.u.]

|φ
E

(x
)|2

Figure 1.8 The probability density of several continuum eigenstates of the Hamiltonian in
Eq. (24) plotted on the baseline of their corresponding energy. The potential is also plotted
for convenience. Note that most continuum states (dashed lines) are delocalized and have a
very small amplitude inside the potential well between the two barriers, whereas there are
continuum functions that are localized inside the well. The localized eigenstate (solid line) is
the same as shown in Figure 1.1.
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Complex absorbing potential (CAP) approach: 
Important issues  

1. Needs to be combined with appropriate electronic structure method (multi-
state, balanced, dynamical and no-dynamical correlation, size-intensive, amendable 
to properties, systematically improvable, correct description of the continuum 
onsets). 

     Solution: EOM-CC family of methods. 

2. In finite bases, CAP is not represented exactly. Cannot go to the limit η->0 
Need to work with finite η. This introduces the need to compute eta-trajectories 
and perturbs the results. 

      Solution: De-perturbative correction. 

 Jagau, Bravaya, Krylov, Ann. Rev. Phys. Chem. 68 525  (2017).



Ab initio methods for open-shell and electronically excited  
species 

Coupled-cluster (CC) hierarchy:  predictive and accurate 
methods for closed-shell molecules   
                      
Equation-of-motion CC (EOM-CC): 
Extends CC approach to excited states and 
multi-configurational wave functions   

V. THE ANALYSIS OF THE „E+A+B…‹E PROBLEM IN
CYCLIC N3

+

The electronic Hamiltonian H=Te+U!r ,Q" can be ex-
panded as Taylor series with respect to small nuclear dis-
placements Q! from a reference high symmetry configura-
tion !Q!=0",

H = H0 + #
!

!H

!Q!
Q! + #

!,"

!2H

!Q!!Q"
Q!Q" + ¼ = H0 + V .

!3"

We truncate this expansion at linear terms and start by
solving the Schrödinger equation for Hamiltonian H0. The
perturbation V thus includes linear vibronic coupling terms
#!!!H /!Q!"Q!.1,2

Instead of taking eigenfunctions of H0 as a basis set for
a subsequent perturbative treatment, we choose to employ a
diabatic basis of HUMO→LUMO CSFs !see Fig. 2". These
CSFs are close to adiabatic states for C2v distorted geom-
etries, whereas at D3h !Q!=0" the corresponding adiabatic
states !i.e., eigenstates of H0" are the linear combinations of
CSFs, as given by Eq. !1".

We employ normal coordinates: bending Qb, asymmetric
stretch Qas and symmetric stretch Qss, which are of a1, b2,
and a1 symmetry !in C2v", respectively. We will consider Qb
and Qas, which constitute the e! degenerate vibration. The
third normal coordinate Qss describes breathing motion,
which does not lift the degeneracy between MOs and CSFs.
This mode will be discussed in the end of the section.

The matrix elements Vij of the vibronic coupling term
are

Vij = $# i%#
!

!H

!Q!
Q!%# j& = #

!

$# i%
!U

!Q!
%# j& Q!

= #
!

Fij
Q!Q!, !4"

where '# k( are the diabatic '!$"A2, !%"A2, !&"B1 , !'"B1( ba-
sis functions.

Selection rules for Fij
Q!,41 derivative or linear vibronic

coupling constant, are readily derived from the group theory
considerations. Vij is nonzero only if ($i% ! (Q!

! ($%j& includes
totally symmetric irrep A1, where ($i%, (%j& , and (Q!

are the
irreps of the # i, # j diabats and the Q! normal mode, respec-
tively. Thus, the linear vibronic coupling is nonzero between
the states of the same symmetry only along the bending nor-
mal coordinate, e.g., ($B1% ! (Qb!a1" ! ($%B1& !A1. For the states
of different symmetry, i.e., A2 and B1, it is nonzero only
along the asymmetric stretch: ($A2% ! (Qas!b2" ! ($%B1& !A1.
Thus, the vibronic coupling matrix elements Vij are

$# i
A2%V%# j

A2& = Fij
QbQb,

$# i
B1%V%# j

B1& = Fij
QbQb, !5"

$# i
B1%V%# j

A2& = Fij
QasQas.

The H0 off-diagonal matrix elements are nonzero only
between the states of the same symmetry,

FIG. 6. !Color" PESs of the ground !X" and the first eight excited states of
cyclic N3

+. Coordinates are as in Fig. 5. Three out of four states in each
multiplicity are almost degenerate at D3h geometry, two being exactly
degenerate.

FIG. 7. EOM-CCSD/6-311G* potential energy surface
scans along symmetric stretch normal coordiante for the
lowest A2 and B1 excited states. Singlets are shown on
the left plot, triplets—on the right. Solid line shows two
exactly degenerate states the !$−%"A2 and !&+'"B1,
i.e., the seam of the intersection. Circles and squares
correspond to the nondegenerate !$+%"A2 and !&
−'"B1 states, respectively. Big circles on the right plot
show two tree-state PES intersections. RNN is a bond
length of equilateral triangle, vertical dashed line points
at the cyclic N3

+ ground state equilibrium geometry.
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EOM-EE
EOM-EA

EOM-IP
EOM-DIP

Monday, January 19, 2015

Figure 3: When combined with the CS or CAP technique, EOM-CC methods (implemented
using standard gaussian basis sets) can describe resonances as bound L2-integrable states, but
with complex energies. Owing to the versatility of the EOM-CC approach, such complex-
valued EOM-CC methods can treat di�erent types of resonances. EOM-EA can tackle
electron-attached states, such as transient anions or excited states of stable anions; EOM-
IP/EOM-DIP are appropriate for core-ionized states, whereas EOM-EE can describe highly
excited states of closed-shell systems. Importantly, these methods describe resonances and
bound states on the same footing and are capable of treating interactions between the states
of di�erent character. redo figure.

HF method has been applied to describe doubly-excited resonance states in Be.48 Fock-space
multireference coupled-cluster methods combined with CAPs have been developed by Pal and
co-workers.49,50 Recently, a CAP version of EOM-CCSD for electron attachment (EOM-EA-
CCSD) has been reported by Ghosh et al.51 and applied to study electron-attached states of
neutral molecules. Finally, production-level implementation of CS and CAP within EOM-CC
suite of methods have been developed by our group.14,52–54 A promising new development
addressing some of the issues with complex scaling, an implementation using mixed basis sets
in which only the di�use basis functions are scaled,55 has been reported recently.56end

The structure of the review is as follows. We begin by discussing the requirements of
underlying electronic structure methodology (Section 2). We then briefly describe CS and
CAP approaches (Sections 3 and 4). We then proceed to practical considerations of imple-
menting these methods and describe the implementations within EOM-CC. Finally, we discuss
interpretation of resonance wave functions.

5

Highly excited  
states

EOM-CC for different types of bound states 
and resonances

Electron-attached 
states, transient 
anions

Ionized and core-
ionized states

Doubly ionized 
states

Different target stats are described by the same effective 
Hamiltonian



 EOM-CC for complex potential energy 
surfaces
Requirements: 
1. PES should be smooth (both resonance positions and 
widths should vary smoothly upon nuclear displacements). 
2. Computed energy differences (e.g., EAs) should be 
consistent with the computed Gamma.

Re(E)

Im(E)

R(A-B)

AB�

AB

AB�
resonance

AB�
bound

1

Jagau,  Krylov, JPCL 5, 3078 (2014).
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2

computed at the UHF (left), UCCSD and EOM-EA-CCSD (right) levels of theory. Potential
energy curves for the N2 ground state are shown as well. UHF and to a lesser extent UCCSD
deliver inconsistent descriptions of the conversion of the resonance into a bound state since
the resonance width becomes zero albeit the N�

2 curve is still above the N2 curve.
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 CAP calculations of complex potential energy 
surfaces

CAP-CCSD PES are less inconsistent (relative to HF) 
CAP-EOM-EA-CCSD are perfectly consistent



Conclusions: 
1. The robustness and accuracy of CAP in finite bases is 
improved by 1st order de-perturbative correction.  
2. CAP-EOM-CC can be applied in a consistent black-box 
manner to molecular systems. 
3. CAP-EOM-CC + de-perturbative correction: smooth PES 
and consistent dE/Gamma. 
4. Recent advances in Dr. Thomas Jagau group: Analytic 
gradients for CAP-EOM-CCSD.



How to make sense of resonance wave 
functions?  

In addition to the study outlined above, this author’s group
also examined how an electron might attach directly to the PdO
π bond of a phosphate group295 and subsequently rupture a
phosphate-sugar OsC bond to cause a strand break using the
model compound shown in Figure 7.18. We also looked at
situations analogous to the phosphate-sugar-base model
discussed above but with a thymine base in place of cytosine.296

Finally, we considered297 the π-stacked CCC codon shown in
Figure 7.19 with an electron attached to the central cytosine
base but with two other cytosine bases above and below. In the
thymine, phosphate, and CCC electron-attachment studies, the
barriers to CsO bond cleavage were determined for the case
where no stabilizing solvation is present when a range of
solvation environments are operative. The primary findings of
all of these studies were the barriers to CsO bond cleavage,
since they determine the rates at which SSBs can occur by this
mechanism, and in all cases, we determined that it is the
sugar-phosphate CsO bond that has the lowest barrier to
breaking. Subsequent to most of these theoretical studies,
experiments from Professors Léon Sanche and Paul Burrow
showed298 that indeed it is primarily the sugar-phosphate CsO
bonds that are cleaved when electrons enter DNA base π*
orbitals.

Professor Fritz Schaefer’s group299 also studied the attachment
of low-energy electrons to DNA fragments consisting of a

base-sugar-phosphate unit. In Figure 7.20, we see the kind
of processes they studied. The Schaefer group concluded that
the lowest-energy attachment occurred at the base π* orbitals
and that both sugar-phosphate C-O and base-sugar N-C
bonds could be cleaved, and they put forth a very interesting
mechanistic proposal for how base release can occur in these
situations.

In section 4, we learned about the roles of Coulomb
interactions in destabilizing the electron binding strength of
anionic sites and in producing repulsive Coulomb barriers that
act to restrain an electron from being ejected. In the experiments
and theoretical simulations of electrons bound to DNA discussed
above, it is important to keep in mind the role of the Coulomb
potential generated by the phosphate groups. In most of the
DNA-related samples treated above, the phosphate groups have
been neutralized (by counter cations or otherwise). This means
that attachment of an electron, for example, to a base π* orbital,
is not affected by Coulomb repulsion. However, in living
systems, the phosphate groups have an electrostatic environment

Figure 7.15. Energies of the unsolvated neutral (b) and anion (O) DNA fragments and of the aqueous neutral (1) and anion (3) as functions of
the sugar-phosphate C-O bond length (Reprinted with permission from ref 292. Copyright 2002 American Chemical Society).

Figure 7.16. Qualitative plots of the π* (red) and σ* (black) diabatic
anion energy states as well as of the neutral state as functions of the
C-O (or N-H or N-C) bond length R.

Figure 7.17. Singly occupied molecular orbital of DNA fragment for
C-O bond lengths near equilibrium (top) and as C-O bond is ruptured
(bottom) (Reprinted with permission from ref 292. Copyright 2002
American Chemical Society).

Review Article J. Phys. Chem. A, Vol. 112, No. 29, 2008 6499

How to analyze resonance  
wave functions? Do molecular  
orbitals make sense in the domain  
of metastable states?  

Simons, JPCA 112 6401 (2008)



How to analyze resonance wave functions? 

1. Chemical transformations induced by electrons depend on 
the shape of MO to which electron is attached. But are 
orbitals real?   

2. Dyson orbitals for bound states: rigorous molecular 
orbital picture of correlated wave functions. Dyson 
orbitals are observables.  

3. Extension  of Dyson orbitals to metastable  
states. 

4. Exciton wave functions and Natural  
Transition Orbitals for metastable states.

E 
 2 2Σ+ 
(0.92 eV) 
 1 2Π 

(0.64 eV) 

 X 2Σ+ 
(−1.00 eV) 

 1 2Σ+ 
(−0.01 eV) 

CuF (E = 0) 

ε 

CuF− 

ε 

CuF− 

[CuF−]* 

ε 

CuF− 

[CuF−]* 

Figure 13: Left: Electronic states of CuF� computed by CAP-EOM-EA-CCSD. Adiabatic
energy di↵erences with respect to the neutral ground state are shown; states located above
the CuF ground state are resonances. Middle: Schematic illustration of selection rules and
PADs for direct detachment and �

⇤ and ⇡
⇤ resonance-mediated autodetachment from CuF�.

Right: The experimental anisotropy parameter for di↵erent vibrational channels in CuF�

photodetachment. � = 2 (� = �1) corresponds to polarization parallel (perpendicular) to the
laser electric field vector. Reproduced with permission from Ref. 149. Copyright ACS 2015.

which corresponds to the direct detachment. However, at photon energies of 1.7 and 1.9 eV,
� shows rapid undulations in all vibrational channels. These features are signatures of the
two autodetachment channels, Eqns. (34) and (36), which both yield less polarized PADs, as
explained above. Theoretical (1.64 eV and 1.92 eV) and experimental (1.7 eV and 1.9 eV)
values are in excellent agreement, which demonstrates the capability of CAP-EOM-EA-CCSD.

A possible additional channel in photodetachment from CuF� is vibrational autodetach-
ment via the dipole-bound state (1 2⌃+). This state is electronically bound, but excitation to
one of its vibrational levels can be followed by relaxation to a lower vibrational level of the
neutral ground state. In general, vibrational autodetachment occurs when the electron kinetic
energy is small and the PESs of the anion/neutral pair are in close proximity and of simi-
lar shapes:155 criteria that are often fulfilled by dipole-bound states. Although vibrational
autodetachment could not be observed experimentally for CuF�, it has been characterized
experimentally and theoretically for AgF�.156

7 Conclusions and outlook

We discussed recent progress in complex-variable approaches, which enable the application
of bound-state quantum chemistry to electronic resonances. Several related techniques, such
as complex scaling, complex basis functions, and CAPs, lead to a non-Hermitian formulation
of quantum mechanics and allow one to describe resonances as discrete L

2-integrable states,
in contrast to Hermitian quantum mechanics, in which resonances manifest themselves by
increased density of states in the continuum. The success of these approaches depends critically
on the properties of the underlying many-body method. Owing to its ability to describe
multiple electronic states on an equal footing, the EOM-CC family of methods provides an
excellent vehicle for modeling resonances by complex-variable approaches.

Summary points (8 max):

30



Molecular orbitals: Appear in MO-LCAO theory 

One electron systems (H2+):  
       Solving Shroedinger eqn using the basis of AOs; 
       Explain bonding in molecules by electron delocalization. 

Many-electron systems: MOs represent the states of pseudo-
independent electrons within mean-field approximation: 

What about correlated wave functions? 

Do orbitals make sense for interacting electrons?  
Are orbitals real? Do they relate to experimental observables?

�0 = |�1�2 . . .�n�

⇥ =
X

K

CK�K

RAPID COMMUNICATIONS

RICHARD MABBS et al. PHYSICAL REVIEW A 82, 011401(R) (2010)

FIG. 1. Photoelectron image of O−
2 detachment at 454.57 nm.

Cobra Stretch). Details of both instruments can be found in
Refs. [28] and [29], respectively. Although there is slightly
greater scatter in the lower resolution measurements, the two
sets are in excellent agreement. However, due to overlapping

transitions in the lower resolution data, direct comparison is
only possible for the O2 (X 3! −

g , v′ = 1–4) ← O−
2 (X 2"g ,

v′′ = 0) transitions shown in Figs. 2(a)–2(d).
The dominant centrifugal term in the anion potential results

in significant E dependence of dσ/d$ and the integral
cross section σ [30–32]. This is clearly seen in the data in
Fig. 2. Qualitatively similar trends are seen for each vibronic
transition, with β(E) becoming increasingly negative as E
increases. To understand this behavior, we first return to atomic
anion detachment.

Under the one-electron approximation, an atomic anion
orbital is a central potential eigenfunction (specified by
quantum number, ℓ). The photoelectron wave function can
be expanded into a series of such eigenfunctions. Selection
rules restrict the superposition to functions specified by
'ℓ = ±1 [32–34]. Interference between these partial waves
determines β(E), and so the cross sections (σℓ±1) and phase
difference [δ(ℓ+1)−(ℓ−1)] are critical [35]:

β(E) = ℓ(ℓ − 1) + (ℓ + 1)(ℓ + 2)A2E2 − ℓ(ℓ + 1)AE cos δ(ℓ+1)−(ℓ−1)

(2ℓ + 1)[ℓ + (ℓ + 1)A2E2]
, (2)

where A is related to anion size [35], and AE represents the
ratio of the partial wave cross sections, σ(ℓ+1)/σ(ℓ−1), assuming
Wigner threshold behavior [31] is a valid approximation.

Molecular anion orbitals are not usually eigenfunctions of
a central potential Hamiltonian. Furthermore, internal degrees
of freedom may become important. In the spirit of Eq. (2),

FIG. 2. (Color online) β parameters associated with each vibrational transition associated with the O2(X 3! −
g , v′) ← O−

2 (X 2"g , v′′ = 0)
band. (a) v′ = 1, (b) v′ = 2, (c) v′ = 3, (d) v′ = 4. Each point represents a different detachment wavelength. The curves are the result of fitting
Eq. (2) to the data. The fitted curves are compared in (e).

011401-2



P � |DIF
k |2

Electronic wave functions, observables, and Dyson orbitals

Probability of ionization event (sudden approximation, dipole approximation): 

Initial state of N-electron system:

Final state of the ionized core (N-1 electron system):

Final state of ionized electron with momentum k:

Photoionization and photodetachment cross sections: What is

calculated in the ezDyson code

I. THE CROSS SECTION EXPRESSION

We use atomic units in all derivations and in the code.

The expression for photodetachment/photoionization cross section [1]:

d⌅

d⌅k
=

4⇤2

c
· E ·

⇤⇤DIF
k (⇥,⇧)

⇤⇤2 (1)

DIF
k is the photoelectron dipole matrix element:

DIF
k = u

�
⇤N

I |r|⇤N�1
F ·⇤el

k

⇥
(2)

|DIF
k |2 =

⌅

�=x,y,z

�
⇧d
L|r�|⇤el

k

⇥ �
⇤el

k |r�|⇧d
R

⇥
cos2(u, e�) =

⌅

�=x,y,z

|DIF
k |2�cos2(u, e�) (3)

where r and u denote dipole moment operator and the polarization of light, respectively;

⇧d is a Dyson orbital connecting the initial and final states:

⇧d(1) =
⌅
N

⇧
⇤I(1, 2, . . . , N)⇤F (2, . . . , N)d2 . . . dN (4)

In a non-Hermitian EOM-CC theory, we have left and right Dyson orbitals [2].

The photoelectron wave function, ⇤el
k , is described by a plane wave expressed in the basis

of spherical (partial) waves, |E, l,m⇥ [3]:

⇤el
k =

⇤⌅

l=0

l⌅

m=�l

|E, l,m⇥ 1⌅
k
Ylm(k̂) (5)

Each partial wave can be written as a product of a radial function, Rkl (spherical Bessel

functions for photodetachment and Coulomb functions for photoionization) and the spherical

harmonics Ylm [3]:

|E, l,m⇥ = il
⌃

2k

⇤
jl(kr)Ylm(⇥,⇧) (6)

We use the following spherical harmonics[3]:

Ylm(⇥,⇧) = �lm(⇥)⇥m(⇧) (7)
⇧ 2⇥

0

⇥⇥
m(⇧)⇥m(⇧)d⇧ = �mm0 (8)

⇧ ⇥
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⌦
�d|r|�el
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Where  φd
IF  is a Dyson orbital:  

Using anti-symmetric properties of the wave function and one-electron  
nature of the dipole operator:

�d(1) =
p
N

Z
�I(1, 2, . . . , N)�F (2, . . . , N)d2 . . . dN

Probability -> cross section (experimental observable). 



�d(1) =
p
N

Z
�I(1, 2, . . . , N)�F (2, . . . , N)d2 . . . dN

DOs characterize the difference between N and N-1 electron states; they are 
generalization of Hartree-Fock MOs to general wave functions. 
DOs enter the expressions of the cross-sections, they are observables.  
PADs: sensitive measure of DO shape.  

Dyson orbitals are experimental observables
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FIG. 5: (a) Absolute cross sections for formaldehyde photoionization. The experimental cross
section are shown as red dots.[52] The computed values are shown by black (PW), blue (CW with
Z=+1), and orange (CW with Z=+0.25). All computed curves include FCFs. (b) The electronic
part of the cross section (i.e., without FCFs) using di�erent values of Z.

which is based on the strong orthogonality assumption, neglects the non-spherical symmetry

of the electrostatic potential, and the correlation and exchange interactions of the ejected

electron with the core, does capture the essential physics. Thus, we conclude that accurate

photoionization cross sections for molecules can be computed by using a modified central

potential model which accounts for non-spherical charge distribution of the core by adjusting

the charge in the center of the expansion. Contrary to the Stieltjes scheme[24, 25, 27], such

calculations do not require calculations with very large basis sets, finding large number of

approximate eignetstates (e.g., via block Lanczos diagonalization), and solving the moments

problem to recover the cumulative oscillator strength for photoionization. However, to make

this model useful for practical calculations, what is needed is a procedure for determining

the optimal charge. This will be pursued in future work.
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ABSTRACT: We apply high-level ab initio methods to
describe the electronic structure of small clusters of ammonia
and dimethyl ether (DME) doped with sodium, which provide
a model for solvated electrons. We investigate the effect of the
solvent and cluster size on the electronic states. We consider
both energies and properties, with a focus on the shape of the
electronic wave function and the related experimental
observables such as photoelectron angular distributions. The central quantity in modeling photoionization experiments is the
Dyson orbital, which describes the difference between the initial N-electron and final (N−1)-electron states of a system. Dyson
orbitals enter the expression of the photoelectron matrix element, which determines total and partial photoionization cross-
sections. We compute Dyson orbitals for the Na(NH3)n and Na(DME)m clusters using correlated wave functions (obtained with
equation-of-motion coupled-cluster model for electron attachment with single and double substitutions) and compare them with
more approximate Hartree-Fock and Kohn-Sham orbitals. We also analyze the effect of correlation and basis sets on the shapes of
Dyson orbitals and the experimental observables.

1. INTRODUCTION
Photoionization and photodetachment experiments are broadly
used in chemical physics1−3 for identification of transient
reaction intermediates and for creating species that are
otherwise unstable (radicals, molecules at transition states) to
study their properties and spectroscopic signatures.4−6 Such
experiments provide detailed information about the energy
levels of the target systems and about the underlying wave
functions. In particular, the cross-sections and photoelectron
angular distributions encode the information about the Dyson
orbital, a one-electron quantity characterizing the difference
between the initial N and final N−1 electron wave functions
(ΨI

N and ΨF
N−1, respectively):7−10

∫ϕ = Ψ Ψ −N n n n(1) (1 ,... , ) (2 ,... , ) d2 ... dN N
IF
d

I F
1

(1)

Within the dipole approximation and strong orthogonality
assumption, Dyson orbitals contain all information about ΨI

N

and ΨF
N−1 needed for computing the so-called photoelectron

matrix element:

ϕ= ⟨ | |Ψ ⟩D u rk k
IF

IF
d el

(2)

where r is the dipole moment operator, u is a unit vector in the
direction of the polarization of light, and Ψk

el is the wave
function of the ejected electron. Dk

IF enters the expression of the
total and differential cross-sections11,12 and is thus an
experimental observable. Consequently, experimentally meas-
ured angular-resolved photoelectron spectra encode the

information about the Dyson orbitals. However, reconstructing
the orbital from the experimental measurements requires
theoretical modeling.10,13,14 In addition to their connection to
the experimental observables, Dyson orbitals are also of a
qualitative value, as they enable simple molecular-orbital
interpretation of the many-electron wave functions.
By virtue of Koopmans’ theorem, Dyson orbitals within the

Hartree-Fock or Kohn-Sham theory are just the canonical
molecular orbitals. In the Koopmans’ framework, possible
multiconfigurational character of the wave functions, dynamical
electron correlation, and orbital relaxation are neglected (the
latter can be included by computing Dyson orbitals using self-
consistent field solutions of the N and N−1 electron systems).
To account for these effects, Dyson orbitals13 can be computed
within the equation-of-motion coupled-cluster (EOM-CC)
framework,15−17 which provides accurate wave functions for
closed-shell and various types of open-shell systems. In this
paper, we consider photoionization from open-shell systems
(doublet states), a situation that usually can be accurately
described by the EOM-CC variant known as EOM-EA-CC
(EOM-CC for electron attachment) in which the target closed-
shell state is described by the CC wave function and the initial
open-shell state is described by EOM-EA. We employ EOM-
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Dyson orbitals in CAP EOM-CC formalism enable 
characterization of resonances beyond energies and 
lifetimes.

Jagau, Krylov,  JCP 144  
054113 (2016)

�d(1) =
p
N

Z
�I(1, 2, . . . , N)�F (2, . . . , N)d2 . . . dN

character of the orbital hosting the extra electron determines which bonds contract, stretch,

or break upon electron attachment and whether new reaction channels open up that were

inaccessible in the corresponding neutral species. The wave functions determine molecular

properties, which can be observed experimentally. Thus, information about wave func-

tions and orbitals can be inferred from experimental measurements. For example, orbital

shapes and symmetries can be reconstructed from cross-sections and angular distributions

of photoelectrons (113). Because of their similarity to bound states, it is desirable to char-

acterize temporary anions and other resonances by means of orbitals as well, so that one

can classify them by chemical terms such as �
⇤ or ⇡

⇤. This goal is readily achieved with

complex-variable approaches. By means of Dyson orbitals (Eq. 3), the molecular-orbital

concept can be applied to many-electron wave functions taking into account correlation

and orbital relaxation. Dyson orbitals are particularly well suited for characterizing shape

resonances where the attachment is of one-electron character (29).

Examples of Dyson orbitals of temporary anions are shown in Fig. 11 and as insets

in Fig. 12. The real parts of these orbitals meet the chemist’s intuition for the MOs of

hypothetical bound anions. The imaginary parts of all orbitals are governed by the require-

ment that the real and imaginary parts be orthogonal (cf. Eq. 7), which is often realized

by means of a di↵erent nodal structure. The orbitals for the polyatomic ⇡
⇤ resonances in

Fig. 11 can be rationalized by the Hückel model whereas the diatomics in Fig. 12 can

be described as symmetric �
⇤ (F�

2 ), symmetric ⇡
⇤ (N�

2 ), and highly distorted ⇡
⇤ (CuF�)

orbitals.

In addition to the valence-like ⇡
⇤ resonance, N-methylformamide also features a dipole-

bound anionic state in which the attached electron resides on an orbital outside the molec-

ular core, on the positive side of the molecular dipole. Due to this orbital shape, the

structures and many molecular properties of dipole-bound anions are very similar to those

of the parent neutral molecules (16, 109, 110). There exist metastable analogs of dipole-

bound states(114). An example is the distorted ⇡
⇤ resonance of CuF� (µ(CuF) = 5.3 D)

in Fig. 12. Similar dipole-stabilized �
⇤ and ⇡

⇤ resonances have been described in AgF�

(114) and nitrogen-containing carbon chains (115).

Fig. 12 illustrates that di↵erent types of resonances feature di↵erent PES. Valence

C6H4O
�
2 /2

Au C6H
�
6 /2

E2u C6H
�
6 /2

B2g

ER = 2.88 eV

� = 0.012 eV

ER = 1.64 eV

� = 0.04 eV

ER = 6.75 eV

� = 0.35 eV

2
A

�

ER = 2.91 eV

� = 0.27 eV

2
A

��
CH3NHCHO

�

E = �0.015 eV

Figure 11

Dyson orbitals for various temporary anions computed with CAP-EOM-EA-CCSD. The upper
and lower plots show the real and imaginary parts, respectively. For N-methylformamide (right),
the Dyson orbital for attachment to the dipole-bound 2A’ state is shown as well. From Ref. 29.
Copyright AIP 2016.
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Dyson orbitals for various temporary anions. The upper and 
lower plots show the real and imaginary parts, respectively.



Exciton wave-functions within CAP EOM-CC 
formalism

4

interpreted as the response of energy to a perturbing electric field ✏:

µ = Tr[⇢µ] = ( I |
@E(✏)

@✏
| I)/( I | I) (14)

Thus, µRe describes how the position of the resonances depends on the perturbing field,

while µ
Im describes the response of the resonance width5.

The meaning and properties of ⇢
Re is similar to OPDM in real-valued theories, i.e.,

its trace equals to the number of electrons, its natural orbitals and respective natural

occupations quantify electron correlation, and its norm provides a bound of one-electron

properties5,18. The interpretation of ⇢Im is less obvious. It is responsible for the one-electron

part of �. It also describes one-electron mapping between  Im and  Re, i.e., for ⇢Im to be

no-zero,  Im and  Re should be connected by one-electron excitations.

Transition OPDM between states I and F is defined as:

�
Re

pq
(FI) = ( Re

F
|p†q| Re

I
)� ( Im

F
|p†q| Im

I
) (15)

�
Im

pq
(FI) = ( Im

F
|p†q| Re

I
) + ( Re

F
|p†q| Im

I
) (16)

Transition OPDM represent a one-electron mapping between the initial and final state and

can be interpreted as an exciton wave function21–24. It is also related to interstate properties,

e.g., transition dipole moment is computed as:

µ
FI

tr
= Tr[�(FI)µ] (17)

µ
IF

tr
= Tr[�(IF )µ] (18)

µtr ⌘
q
µ
FI

tr µ
IF

tr (19)

In a non-Hermitian theory such as EOM-CC25,26, left and right eigenstates are not Hermitian

conjugates, but rather form a biorthogonal set. Consequently �(FI) is not equal transposed

�(IF ) and geometric average is used for interstate matrix elements.

In the case of transitions between bound ( I) and metastable ( F ) states, the wave

Transition density matrix: reduced information about transition

5

function of the initial state is real,  I =  re

I
. Thus

 Re

F
=

X

pq

�
Re

pq
p
†
q I + higher excitations (20)

 Im

F
=

X

pq

�
Im

pq
p
†
q I + higher excitations (21)

(22)

Thus, �Re and �
Im can be interpreted as real and imaginary amplitudes of a single excitation

operator that generates a correlated many-body  F from  I . The norm of � quantifies the

amount of singly excited character, i.e., ||�|| = 1 for a purely singly excited transition, as,

for example, between a Hartree-Fock reference and a CIS state. Smaller values indicate

doubly excited character. For complex-valued wave functions, the relative magnitude of the

norms of �Re and �
Im quantifies the relative sizes of the real and imaginary parts. Given

the relationship between �
Im and resonance width, one can consider this quantity as an

indication of the strength of the resonance coupling to the continuum and its lifetime.

We define a quantity ! that gives the weight of the imaginary part of the exciton in the

total transition:

! ⌘ ||�Im||2

||�Re||2 + ||�Im||2 (23)

For transitions between bound states, !=0. We expect large ! for continuum states and we

expect ! to correlate with resonance width.

� describes the changes in electron density upon excitation. In analogy with real-valued

theories, �Re and �
Im can be interpreted as real and imaginary parts of the exciton wave

function, ⇠(rp, rh):

⇠(rp, rh) =
X

pq

�pq(FI)�p(rp)�q(rh), (24)

where rp and rh denote particle and hole coordinates, respectively (using rh = rp = r, ⇠ is

reduced to transition density). The exciton wave function can be analyzed by computing

various expectation values, i.e., exciton size, hole-particle separation and correlation, etc.

As illustrated in several recent studies, these exciton descriptors help to assign state

character27,28.

The imaginary part of the resonance wave function (and, consequently, the imaginary

One-electron mapping between initial and final states. For bound initial state: 

Transition density represents exciton wave-function
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The imaginary part of the resonance wave function (and, consequently, the imaginary

L c can be defined in terms of coherence par t icipa-
t ion ra t io.237,238 At fir st , we in t roduce a normalized
probability dist r ibu t ion of the density mat r ix ele-
ments

L c is then defined as follows:

For t igh t ly bound e-h pairs Qnm ) δnm /L d and L c )
1; for loosely bound e-h pairs Qnm ) 1/L d2 and L c ∼
L . Both L c and L d thus vary between 1 and L , where
L is the number of a toms. Unlike L d, which only

depends on the popula t ions, L c measures the degree
of coherence and is sensit ive to the off-diagona l
elements of the density mat r ix. Both L c, and L d
depend on the basis set .
Note, tha t L d and L c defined by eqs 2.23 and 2.25,

respect ively, represen t a tota l number of a toms
involved into electronic excita t ion, whereas coherence
sizes obta ined from the two-dimensional plots reflect
the exten t of the t ransit ion densit ies in rea l space.
They may not be the same. For example, the exciton
corresponding to the band-gap excita t ion in PPV (see
Sect ion IIIA) is extended over 5 repea t unit s (40
a toms) (Figure 3I). However , the coherence size L c
computed with eq 2.25 is only 26 atoms. This reflects
uneven par t icipa t ion of phenyl and vinyl carbon
a toms in the opt ica l excita t ion . In remainder of the
paper , we will be using two-dimensiona l plots to
obta in necessary coherence sizes relevant to the
delocalizat ion of the transit ion densit ies in real space.
The significance of the CEO oscilla tors may be

expla ined by drawing upon the ana logy with the
descr ipt ion of vibra t iona l spect roscopy,239 whereby
the coheren t mot ion of var ious a toms with well-
defined amplitude and phase rela t ions are repre-
sen ted by collect ive nuclear coordina tes; the normal

Figure 2. Two-dimensiona l represen ta t ion and physica l
sign ificance of elect ron ic modes. Each mode "ν is an L × L
matr ix, L being the number of a toms. The contour plot
provides a direct rea l-space connect ion between the opt ica l
response and mot ions of charges in the molecule upon
opt ica l excita t ion . The x axis represen ts an ext ra elect ron
on site n , and the y axis descr ibes an ext ra hole on site m .
The incident ligh t moves an elect ron from some occupied
to an unoccupied orbita ls, crea t ing an elect ron-hole pa ir
(or exciton). The sta te of th is pa ir can be character ized by
two lengthsca les: fir st , the distance between elect ron and
hole (i.e., how far the elect ron can be separa ted apar t from
the hole). This coherence size L c is the “width” of the
density matr ix along the ant idiagonal direct ion. The second
length L d descr ibes the exciton center of mass posit ion (i.e.,
where the opt ica l excita t ion resides with in the molecule).
L d is the “width” of the mode a long the diagona l an t idi-
agona l direct ion . Charge-t ransfer processes can be char -
acter ized by the asymmetry of mode with respect to the
diagona l symmetr ica l mode a tom. ("ν)mn ∼ ("ν)nm means
tha t there is no preferable direct ion of mot ion for elect rons
(or holes), whereas ("ν)mn > ("ν)nm shows the t ransfer of
elect ron from m to n .

Qnm )
|"nm |

∑
ij

|"ij|
(2.24)

L c ≡ [L d∑
mn
Qnm
2 ]-1 (2.25)

Figure 3. (A) Geometry and a tom labeling of PPV oligo-
mers. Molecular st ructure was opt imized using the Aust in
model 1 (AM1) semiempir ica l model492 in Gaussian 98
package;142 (B) Absorpt ion spect rum of PPV(10). Dashed
line: exper imenta l absorpt ion of a PPV thin film.243 Solid
line: absorpt ion line shape of PPV(10) obta ined with 12
effect ive modes DSMA calcula t ion with line width Γν ) 0.1
eV; Contour plots of ground-sta te density matr ix Fj and five
elect ron ic modes (I-V) which domina te the linear absorp-
t ion of PPV(10). The sizes of plot ted mat r ices are 78 × 78
(equal to the number of carbon atoms in PPV(10)). The axis
a re labeled by the repea t unit s. The color maps are given
on the top of color plots. Repr in ted with permission from
ref 91. Copyr igh t 1997 Amer ican Associa t ion for the
Advancement of Science.

3180 Chemical Reviews, 2002, Vol. 102, No. 9 Tretiak and Mukamel

Transition density related to observables



Natural Transition Orbitals within CAP EOM-CC
Natural Transition Orbitals: Diagonal representation of the transition OPDM  
(SVD of gamma):

⇠(rp, rh) =
X

pq

�pq�p(rp)�q(rh) =
X

K

�K �̃p
K(rp)�̃

h
K(rh)

Or give most compact representation of the transition:

And are related to the observables:

<  F |µ| I >= Tr[�µ] =
X

K

�K < �̃h
K |µ|�̃p

K >

Resonance wave-functions: Real and imaginary excitons 

Luzanov, Zhikol, In Practical aspects of computational chemistry Springer, 2012;  
Plasser, Wormit, Dreuw, JCP 141 024106 (2014); Bappler, Plasser, Wormit,  
Dreuw PRA 90 052521 (2014); Head-Gordon et al, JPC 99 14261 (1995);  
Martin, JCP 118 4775 (2003).

 F =
X

K

�Ka†KiK I + higher excitations



Example: Bound and metastable states in 
cyanopolyynes C3xN- 

PC68CH24-Krylov ARI 12 April 2017 11:59

1. INTRODUCTION: WHAT IS A RESONANCE?
Resonances are nonstationary states of systems that have sufficient energy to break up into sub-
systems and sufficiently long lifetimes to be characterized experimentally (1–3), which implies
that the decay process is long compared to the timescale of an observation. Depending on the
nature of the resonance, timescales vary from femtoseconds (autoionization) to billions of years
(radioactive nuclear decay). In the context of chemical dynamics, picosecond lifetimes are most
common (molecular predissociation, predesorption from surfaces, etc). The focus of this review
is on electronic resonances—metastable electronic states embedded in the ionization or electron-
detachment continua (see Figure 1).

Electronic resonances play important roles in nature, science, and technology. They are com-
mon in energetic environments, such as plasma, which is generated in electric arcs, supersonic
combustion, fusion reactors and stars, plasma displays, extremely hot flames, lightning, polar
aurorae, etc. Dissociative recombination via autoionizing states is important in interstellar chem-
istry (4). Resonances are also involved in condensed-phase processes, e.g., in radiolysis and damage
to DNA by slow electrons (5, 6), single-molecule electronics (7), and plasmonic catalysis (8, 9)
(see the sidebar titled Plasmonic Catalysis). A new wave of interest in autoionizing states has been

a b c
E

[AB–]*

AB

AB–

E

AB**

AB

AB+

AB*

E

[AB+]**

AB 

AB+

AB2+

Figure 1
Resonances are metastable states with finite lifetimes embedded in the continuum. Different types of
electronic resonances include temporary anions (species with negative electron affinity) (a), high-lying
excited electronic states (b), and core-ionized states (c).

PLASMONIC CATALYSIS

A temporary electron capture into a metastable electronic state can initiate diverse and complex chemistry in
isolated molecules and in condensed phase. This phenomenon provides a basis for plasmonic photocatalysis (8,
9), photocatalytic conversions on the surface of plasmonic metal nanoparticles. Owing to their collective excitation
nature, plasmons have large cross sections for light absorption and act as antennas. The subsequent relaxation of
surface plasmon resonance can release energy by producing ballistic or hot electrons, which can be trapped by
molecules absorbed on the surface. The resulting transient negative ions can further decay via electron ejection
into the vacuum and into the metal, or undergo chemical transformations. As electron attachment changes the
bonding pattern of a molecule, it opens up new reaction pathways, which can be exploited in catalytic applications.
Depending on the topology of the potential energy surface of the transient negative ion and its lifetime, reactions
can be initiated by one electron transfer (linear regime) or via multiple electron transfer-recombination events
(super-linear regime) (8).

526 Jagau et al.
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2 C3N
�

In this part of report electronic structure of C3N� is investigated. The molecule was optimized
using RI-MP2 with aug-cc-pVTZ basis set as preliminary calculations, which was compared to
the experimental values shown below.

Bond
Bond Length (Å)

RI-MP2(aug-cc-pVTZ)
Bond Length1 (Å)

CCSD(T)/aug-cc-pCV5Z
Bond Length2 (Å)
CCSD(T)-F12b

C1-C2 1.255 1.252 1.251
C2-C3 1.354 1.366 1.366
C3-N 1.181 1.171 1.171

Reference 1 - J. Phys. Chem. A, Vol. 114, No. 9, 2010.
Reference 2 - Molecular Physics, 2015 Vol. 113, No. 15-16, 2169-2178

After comparison, bond lengths reported in reference 2 were used due to high level theory
calculations. Important hartree-fock molecular orbitals and their energy are shown below.

⇡1x � ⇡2x ⇡2y

MO ⇡1x � ⇡2x = ⇡2y

IP(eV)
(Koopmans)

9.170 6.449 4.680

The above observed molecular orbitals are similar in nature as we expect to happen in
conjugated alkenes. After this analysis, EOM-IP-CCSD(aug-cc-pVTZ) calculations were per-
formed on the same geometry of anion. The aim for this calculation was to understand the
vertical detachment energy (VDE) of electron to neutral molecule. VDE and dipole moments
are mentioned in the table below.
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2 C3N
�

In this part of report electronic structure of C3N� is investigated. The molecule was optimized
using RI-MP2 with aug-cc-pVTZ basis set as preliminary calculations, which was compared to
the experimental values shown below.

Bond
Bond Length (Å)

RI-MP2(aug-cc-pVTZ)
Bond Length1 (Å)

CCSD(T)/aug-cc-pCV5Z
Bond Length2 (Å)
CCSD(T)-F12b

C1-C2 1.255 1.252 1.251
C2-C3 1.354 1.366 1.366
C3-N 1.181 1.171 1.171

Reference 1 - J. Phys. Chem. A, Vol. 114, No. 9, 2010.
Reference 2 - Molecular Physics, 2015 Vol. 113, No. 15-16, 2169-2178

After comparison, bond lengths reported in reference 2 were used due to high level theory
calculations. Important hartree-fock molecular orbitals and their energy are shown below.

⇡1x � ⇡2x ⇡2y

MO ⇡1x � ⇡2x = ⇡2y

IP(eV)
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9.170 6.449 4.680

The above observed molecular orbitals are similar in nature as we expect to happen in
conjugated alkenes. After this analysis, EOM-IP-CCSD(aug-cc-pVTZ) calculations were per-
formed on the same geometry of anion. The aim for this calculation was to understand the
vertical detachment energy (VDE) of electron to neutral molecule. VDE and dipole moments
are mentioned in the table below.

7

3 C5N
�

In this part of report electronic structure of C5N� is investigated. It was optimized using
!B97X-D/ aug-cc-pVTZ, and compared to previously reported values. Important HF molecular
orbitals are shown below.

Bond
Bond Length (Å)

!B97X-D(aug-cc-pVTZ)
Bond Length1 (Å)

CCSD(T)/aug-cc-pVQZ +correction
C1-C2 1.221 1.258
C2-C3 1.345 1.345
C3-C4 1.245 1.231
C4-C5 1.357 1.357
C5-N 1.159 1.169

Reference 1 - J. Chem. Phys. 129, 044305 2008.
After comparison, bond lengths reported in reference 1 were used due to high level theory

calculations. Important hartree-fock molecular orbitals and their energy are shown below.

⇡1y ⇡1x ⇡2y ⇡2x � ⇡3y ⇡3x

MO ⇡1x = ⇡1y ⇡2x = ⇡2y � ⇡3x = ⇡3y

IP(eV)
(Koopmans)

10.802 8.326 7.020 4.625

The above observed molecular orbitals are similar in nature as we expect to happen in
conjugated alkenes. After this analysis, EOM-IP-CCSD(aug-cc-pVTZ) calculations were per-
formed on the same geometry of anion. The aim for this calculation was to understand the
vertical detachment energy (VDE) of electron to neutral molecule. VDE and dipole moments
are mentioned in the table below.

Transition Symmetry
Detached
From

R2
1

VDE
(eV)

ADE
(eV)

Dipole Moment
(a.u) z-axis

C5N� ! C5N X1⌃+ ! X2⌃+ � 0.8748 4.981 T.B.C 2.298
C5N� ! C5N⇤ X1⌃+ ! A2⇧ ⇡3x 0.9332 4.701 T.B.C 0.0418
C5N� ! C5N⇤ X1⌃+ ! B2⇧ ⇡2x 0.8968 7.695 T.B.C 1.266
C5N� ! C5N⇤ X1⌃+ ! C2⇧ ⇡2x 0.8725 9.757 T.B.C 3.0976
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4 C7N
�

In this part of report electronic structure of C7N� is investigated. It was optimized using
!B97X-D/ aug-cc-pVTZ, and compared to previously reported values. Important HF molecular
orbitals are shown below.

Bond
Bond Length (Å)

!B97X-D(aug-cc-pVTZ)
Bond Length1 (Å)

CCSD(T)/aug-cc-pVQZ +correction
C1-C2 1.261 1.261
C2-C3 1.347 1.338
C3-C4 1.238 1.237
C4-C5 1.346 1.337
C5-C6 1.229 1.228
C6-C7 1.366 1.359
C7-CN 1.168 1.168

Reference 1 - J. Chem. Phys. 129, 044305 2008.
After comparison, bond lengths reported in reference 1 were used due to high level theory

calculations. Important hartree-fock molecular orbitals and their energy are shown below.

⇡2y ⇡2x ⇡3y ⇡3x � ⇡4y ⇡4x

MO ⇡2x = ⇡2y ⇡3x = ⇡3y � ⇡4x = ⇡4y

IP(eV)
(Koopmans)

10.095 7.809 7.374 4.653

After this analysis, EOM-IP-CCSD(aug-cc-pVTZ) calculations were performed on the same
geometry of anion. The aim for this calculation was to understand the vertical detachment
energy (VDE) of electron to neutral molecule. VDE and dipole moments are mentioned in the
table below.

Transition Symmetry
Detached
From

R2
1

VDE
(eV)

ADE
(eV)

Dipole Moment
(a.u) z-axis

C7N� ! C7N X1⌃+ ! X2⌃+ � 0.8664 5.208 T.B.C 3.123
C7N� ! C7N⇤ X1⌃+ ! A2⇧ ⇡3x 0.9297 4.696 T.B.C 0.0102
C7N� ! C7N⇤ X1⌃+ ! B2⇧ ⇡2x 0.8985 7.298 T.B.C 1.6215

ADE = Adiabatic Detachment Energy
T.B.C = To be calculated

EOM-IP shows that removing the electron from ⇡ orbitals requires least energy.

15

Anions are closed-shell species (singlets) 
Neutrals are open-shells (doublets)

Dr. Wojtek  
Skomorowski

Sahil Gulania

Studied by Neumark (exp), Simons, Sommerfeld, Crawford (theory), 
 and others. 
Our work:  Skomorowski, Gulania, Krylov, PCCP 20, 4805 (2018).



Resonances and bound states in cynanopolyyenes
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2 C3N
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In this part of report electronic structure of C3N� is investigated. The molecule was optimized
using RI-MP2 with aug-cc-pVTZ basis set as preliminary calculations, which was compared to
the experimental values shown below.
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RI-MP2(aug-cc-pVTZ)
Bond Length1 (Å)

CCSD(T)/aug-cc-pCV5Z
Bond Length2 (Å)
CCSD(T)-F12b

C1-C2 1.255 1.252 1.251
C2-C3 1.354 1.366 1.366
C3-N 1.181 1.171 1.171

Reference 1 - J. Phys. Chem. A, Vol. 114, No. 9, 2010.
Reference 2 - Molecular Physics, 2015 Vol. 113, No. 15-16, 2169-2178

After comparison, bond lengths reported in reference 2 were used due to high level theory
calculations. Important hartree-fock molecular orbitals and their energy are shown below.

⇡1x � ⇡2x ⇡2y

MO ⇡1x � ⇡2x = ⇡2y

IP(eV)
(Koopmans)

9.170 6.449 4.680

The above observed molecular orbitals are similar in nature as we expect to happen in
conjugated alkenes. After this analysis, EOM-IP-CCSD(aug-cc-pVTZ) calculations were per-
formed on the same geometry of anion. The aim for this calculation was to understand the
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2 C3N
�

In this part of report electronic structure of C3N� is investigated. The molecule was optimized
using RI-MP2 with aug-cc-pVTZ basis set as preliminary calculations, which was compared to
the experimental values shown below.

Bond
Bond Length (Å)

RI-MP2(aug-cc-pVTZ)
Bond Length1 (Å)

CCSD(T)/aug-cc-pCV5Z
Bond Length2 (Å)
CCSD(T)-F12b

C1-C2 1.255 1.252 1.251
C2-C3 1.354 1.366 1.366
C3-N 1.181 1.171 1.171

Reference 1 - J. Phys. Chem. A, Vol. 114, No. 9, 2010.
Reference 2 - Molecular Physics, 2015 Vol. 113, No. 15-16, 2169-2178

After comparison, bond lengths reported in reference 2 were used due to high level theory
calculations. Important hartree-fock molecular orbitals and their energy are shown below.
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formed on the same geometry of anion. The aim for this calculation was to understand the
vertical detachment energy (VDE) of electron to neutral molecule. VDE and dipole moments
are mentioned in the table below.
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3 C5N
�

In this part of report electronic structure of C5N� is investigated. It was optimized using
!B97X-D/ aug-cc-pVTZ, and compared to previously reported values. Important HF molecular
orbitals are shown below.

Bond
Bond Length (Å)

!B97X-D(aug-cc-pVTZ)
Bond Length1 (Å)

CCSD(T)/aug-cc-pVQZ +correction
C1-C2 1.221 1.258
C2-C3 1.345 1.345
C3-C4 1.245 1.231
C4-C5 1.357 1.357
C5-N 1.159 1.169

Reference 1 - J. Chem. Phys. 129, 044305 2008.
After comparison, bond lengths reported in reference 1 were used due to high level theory

calculations. Important hartree-fock molecular orbitals and their energy are shown below.

⇡1y ⇡1x ⇡2y ⇡2x � ⇡3y ⇡3x

MO ⇡1x = ⇡1y ⇡2x = ⇡2y � ⇡3x = ⇡3y

IP(eV)
(Koopmans)

10.802 8.326 7.020 4.625

The above observed molecular orbitals are similar in nature as we expect to happen in
conjugated alkenes. After this analysis, EOM-IP-CCSD(aug-cc-pVTZ) calculations were per-
formed on the same geometry of anion. The aim for this calculation was to understand the
vertical detachment energy (VDE) of electron to neutral molecule. VDE and dipole moments
are mentioned in the table below.

Transition Symmetry
Detached
From

R2
1

VDE
(eV)

ADE
(eV)

Dipole Moment
(a.u) z-axis

C5N� ! C5N X1⌃+ ! X2⌃+ � 0.8748 4.981 T.B.C 2.298
C5N� ! C5N⇤ X1⌃+ ! A2⇧ ⇡3x 0.9332 4.701 T.B.C 0.0418
C5N� ! C5N⇤ X1⌃+ ! B2⇧ ⇡2x 0.8968 7.695 T.B.C 1.266
C5N� ! C5N⇤ X1⌃+ ! C2⇧ ⇡2x 0.8725 9.757 T.B.C 3.0976
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4 C7N
�

In this part of report electronic structure of C7N� is investigated. It was optimized using
!B97X-D/ aug-cc-pVTZ, and compared to previously reported values. Important HF molecular
orbitals are shown below.

Bond
Bond Length (Å)

!B97X-D(aug-cc-pVTZ)
Bond Length1 (Å)

CCSD(T)/aug-cc-pVQZ +correction
C1-C2 1.261 1.261
C2-C3 1.347 1.338
C3-C4 1.238 1.237
C4-C5 1.346 1.337
C5-C6 1.229 1.228
C6-C7 1.366 1.359
C7-CN 1.168 1.168

Reference 1 - J. Chem. Phys. 129, 044305 2008.
After comparison, bond lengths reported in reference 1 were used due to high level theory

calculations. Important hartree-fock molecular orbitals and their energy are shown below.

⇡2y ⇡2x ⇡3y ⇡3x � ⇡4y ⇡4x

MO ⇡2x = ⇡2y ⇡3x = ⇡3y � ⇡4x = ⇡4y

IP(eV)
(Koopmans)

10.095 7.809 7.374 4.653

After this analysis, EOM-IP-CCSD(aug-cc-pVTZ) calculations were performed on the same
geometry of anion. The aim for this calculation was to understand the vertical detachment
energy (VDE) of electron to neutral molecule. VDE and dipole moments are mentioned in the
table below.

Transition Symmetry
Detached
From

R2
1

VDE
(eV)

ADE
(eV)

Dipole Moment
(a.u) z-axis

C7N� ! C7N X1⌃+ ! X2⌃+ � 0.8664 5.208 T.B.C 3.123
C7N� ! C7N⇤ X1⌃+ ! A2⇧ ⇡3x 0.9297 4.696 T.B.C 0.0102
C7N� ! C7N⇤ X1⌃+ ! B2⇧ ⇡2x 0.8985 7.298 T.B.C 1.6215

ADE = Adiabatic Detachment Energy
T.B.C = To be calculated

EOM-IP shows that removing the electron from ⇡ orbitals requires least energy.

15



4 C7N
�

In this part of report electronic structure of C7N� is investigated. It was optimized using
!B97X-D/ aug-cc-pVTZ, and compared to previously reported values. Important HF molecular
orbitals are shown below.

Bond
Bond Length (Å)
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1. Red line in the above figure shows the cross section for removing an electron from �
molecular orbital.

2. Black line in the above figure shows the cross section for removing an electron from ⇡
molecular orbital.

3. Green point shows the experimental data for electron detachment energy from CN�(!
Only one data point is available) (The Astrophysical Journal, 776:25 , 2013 October 10).

4. Purple line corresponds to the cross-section for removing an electron from �⇤ molecular
orbital

5. Yellow lines corresponds to sum of the cross section (�+⇡+�⇤)

6. Blue lines represents the cross section including the resonance cross section. [Lorentzian
peak at 7.31 eV]

Cross section for resonance (Am. J. Phys. 50, 982, 1982).

�(!) =
0.0483

0.397 + (! � 7.31)2
(1)

7. Franck Condon Factors

Energy,eV Intensity FC factor Transition
3.99 0.9759 0.9878 0(0)!1(0)
4.25 0.0236 -0.1536 0(0)!1(1v0)

1.2 Dyson orbitals and Angular Distribution

One of the main experimental observation, which can be observed experimentally is the anisotropy
parameter. It will reveal the information about the photodetached electron and its origin from
molecular orbital. This quantity can also be computed by ezDyson. Below are the Dyson
orbitals and their symmetry.

A1 B2
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parameter. It will reveal the information about the photodetached electron and its origin from
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orbitals and their symmetry.
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2.3 Dyson orbitals and Angular Distribution (C3N
�
)
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For comparing the the cross-section with experiment the ionization threshold is di↵erence be-
tween the energy of anion at anion equilibrium geometry and energy of open shell neutral at
its equilibrium geometry. Ionization thresh hold is 4.53 eV.
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2.3 Dyson orbitals and Angular Distribution (C3N
�
)
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3 C5N
�

In this part of report electronic structure of C5N� is investigated. It was optimized using
!B97X-D/ aug-cc-pVTZ, and compared to previously reported values. Important HF molecular
orbitals are shown below.

Bond
Bond Length (Å)

!B97X-D(aug-cc-pVTZ)
Bond Length1 (Å)

CCSD(T)/aug-cc-pVQZ +correction
C1-C2 1.221 1.258
C2-C3 1.345 1.345
C3-C4 1.245 1.231
C4-C5 1.357 1.357
C5-N 1.159 1.169

Reference 1 - J. Chem. Phys. 129, 044305 2008.
After comparison, bond lengths reported in reference 1 were used due to high level theory

calculations. Important hartree-fock molecular orbitals and their energy are shown below.

⇡1y ⇡1x ⇡2y ⇡2x � ⇡3y ⇡3x

MO ⇡1x = ⇡1y ⇡2x = ⇡2y � ⇡3x = ⇡3y

IP(eV)
(Koopmans)

10.802 8.326 7.020 4.625

The above observed molecular orbitals are similar in nature as we expect to happen in
conjugated alkenes. After this analysis, EOM-IP-CCSD(aug-cc-pVTZ) calculations were per-
formed on the same geometry of anion. The aim for this calculation was to understand the
vertical detachment energy (VDE) of electron to neutral molecule. VDE and dipole moments
are mentioned in the table below.

Transition Symmetry
Detached
From

R2
1

VDE
(eV)

ADE
(eV)

Dipole Moment
(a.u) z-axis

C5N� ! C5N X1⌃+ ! X2⌃+ � 0.8748 4.981 T.B.C 2.298
C5N� ! C5N⇤ X1⌃+ ! A2⇧ ⇡3x 0.9332 4.701 T.B.C 0.0418
C5N� ! C5N⇤ X1⌃+ ! B2⇧ ⇡2x 0.8968 7.695 T.B.C 1.266
C5N� ! C5N⇤ X1⌃+ ! C2⇧ ⇡2x 0.8725 9.757 T.B.C 3.0976
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In this part of report electronic structure of C5N� is investigated. It was optimized using
!B97X-D/ aug-cc-pVTZ, and compared to previously reported values. Important HF molecular
orbitals are shown below.

Bond
Bond Length (Å)

!B97X-D(aug-cc-pVTZ)
Bond Length1 (Å)

CCSD(T)/aug-cc-pVQZ +correction
C1-C2 1.221 1.258
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4 C7N
�

In this part of report electronic structure of C7N� is investigated. It was optimized using
!B97X-D/ aug-cc-pVTZ, and compared to previously reported values. Important HF molecular
orbitals are shown below.

Bond
Bond Length (Å)

!B97X-D(aug-cc-pVTZ)
Bond Length1 (Å)

CCSD(T)/aug-cc-pVQZ +correction
C1-C2 1.261 1.261
C2-C3 1.347 1.338
C3-C4 1.238 1.237
C4-C5 1.346 1.337
C5-C6 1.229 1.228
C6-C7 1.366 1.359
C7-CN 1.168 1.168

Reference 1 - J. Chem. Phys. 129, 044305 2008.
After comparison, bond lengths reported in reference 1 were used due to high level theory

calculations. Important hartree-fock molecular orbitals and their energy are shown below.

⇡2y ⇡2x ⇡3y ⇡3x � ⇡4y ⇡4x

MO ⇡2x = ⇡2y ⇡3x = ⇡3y � ⇡4x = ⇡4y

IP(eV)
(Koopmans)

10.095 7.809 7.374 4.653

After this analysis, EOM-IP-CCSD(aug-cc-pVTZ) calculations were performed on the same
geometry of anion. The aim for this calculation was to understand the vertical detachment
energy (VDE) of electron to neutral molecule. VDE and dipole moments are mentioned in the
table below.

Transition Symmetry
Detached
From

R2
1

VDE
(eV)

ADE
(eV)

Dipole Moment
(a.u) z-axis

C7N� ! C7N X1⌃+ ! X2⌃+ � 0.8664 5.208 T.B.C 3.123
C7N� ! C7N⇤ X1⌃+ ! A2⇧ ⇡3x 0.9297 4.696 T.B.C 0.0102
C7N� ! C7N⇤ X1⌃+ ! B2⇧ ⇡2x 0.8985 7.298 T.B.C 1.6215

ADE = Adiabatic Detachment Energy
T.B.C = To be calculated

EOM-IP shows that removing the electron from ⇡ orbitals requires least energy.
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CN-

C3N-

C5N-

C7N-

4.00 eV 
1.37 D

5.33 eV 
0.20 D

4.67 eV 
3.86 D

4.72 eV 
0.14 D

4.98 eV 
5.84 D

4.70 eV 
0.11 D

5.21 eV 
7.94 D

4.70 eV 
0.03 D

Electron-detached states of the CnN anions

Large electron affinities/detachment energies; 

Detachment from σ orbital leads to  
large dipole moment; 

Detachment from π orbital: small dipole  
moment;

2⌃ 2⇧

σ orbital is stabilized  
in longer chains by increased  
dipole moment



Orbital characterization of the excited states

I Resonances correspond to valence transition of the type ⇡ ! ⇡⇤ (⌃+, �, ⌃�) or
� ! ⇡⇤ (⇧)

I 1⌃+ resonance in C7N� is an exception – it has a strongly mixed ⇡ ! ⇡⇤ and
� ! �⇤ character
W. Skomorowski Real and imaginary excitons 9 / 14

Example: NTOs for resonances in CN- (more in W. 
Skomorowskii talk/poster)

Hole orbital: Same for real and imaginary part of gamma 
Particle orbital: very different!
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FIG. S2: Real and imaginary Natural Transition Orbitals for the 1� excited state in CN�

and C3N�. This is predominantly ⇡ ! ⇡⇤ transition.

FIG. S3: Real and imaginary Natural Transition Orbitals for the 1⌃+ metastable excited
state in four C7N�. This is a mixed ⇡ ! ⇡⇤ and � ! �⇤ transition.
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FIG. S2: Real and imaginary Natural Transition Orbitals for the 1� excited state in CN�

and C3N�. This is predominantly ⇡ ! ⇡⇤ transition.

FIG. S3: Real and imaginary Natural Transition Orbitals for the 1⌃+ metastable excited
state in four C7N�. This is a mixed ⇡ ! ⇡⇤ and � ! �⇤ transition.

Real and imaginary excitons (more in W. Skomorowskii 
talk/poster)

C3N-

C7N-

1�

1⌃+

PRNTO=2

PRNTO (Re)=2.9
PRNTO (Im)=1.4



Huckel model explains trends in resonances and bound 
states in cynanopolyyenes

9

σ

CN- C3N- C5N- C7N-

FIG. 3: Frontier ⇡ orbitals in cyanopolyyne anions.

ically preferred for longer species. Di↵erent behavior of frontier orbital energies leads to

the change of the C2n�1N radical ground state from 2⌃+ to 2⇧ state as the carbon chain

increases. Directly comparable with experimental measurements are adiabatic detachment

energies (ADE). Table II summarizes our calculated ADEs together with the available ex-

perimental values49,50,76. An inspection of Table II shows that discrepancies between theory

and experiment are within 0.2–0.3 eV, as expected for the EOM-CCSD approach. Accord-

ing to our calculations, the cross-over between 2⌃+ and 2⇧ C2n�1N ground state happens

in C5N (both adiabatically and vertically). The most recent photoelectron spectroscopic

study50 found that the ground state of C5N is still 2⌃+, whereas the 2⇧ state is located

0.069± 0.015 eV above the 2⌃+ threshold. A higher level of electron correlation treatment

beyond EOM-CCSD would be necessary to exactly reproduce the crossover between those

two almost degenerate states of C5N.

An important feature of the C2n�1N radicals is their dipole moment, which is given in

Table I. States of 2⌃+ symmetry have large dipole moment, which increases with the length

of the carbon chain. Very di↵erent behavior is observed for 2⇧ states – their dipole moment

remains very small independently of the molecular size. Increasing the dipole moment in the

2⌃+ state of has two consequences. First, it confirms the stabilization e↵ect of the lone pair

� frontier orbital, as seen in the energies of the 2⌃+ detached states. Second, it shows that
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FIG. 6: Excitation energies from ab initio calculations and Hückel model analysis for excited states
dominated by ⇡ ! ⇡? transitions.

and it depends only on one parameter �. We determined optimal � values for each of the

⇡ ! ⇡
? excitations by least squares fitting. The optimal � values vary between –3.23 and

–4.14 eV. Figure 6 compares original ab initio transition energies with those from the Hückel

model. The variation in � values is not surprising, as we describe multiple states of di↵erent

spin and spatial symmetry with the same model. Similarly, di↵erent �0s are used to describe

singlet/triplet transitions in conjugated hydrocarbon molecules85. In all cases shown in Fig. 6

there is a reasonably good agreement, showing the regularity of the excitation energies in the

cyanopolyyne anions. Remarkably, the Hückel model is capable of reproducing consistently

the transitions to both metastable and bound states. The agreement between the two curves

in Fig. 6 can be made almost perfect if we would allow for slightly di↵erent values of the

resonance integrals � for CN and CC bonds.

The positions of the metastable states are lowered with the increasing chain length,

as their widths become more and more narrow. This behavior can be explained by pure

polarization e↵ect. Longer carbon chain implies larger polarizability of the neutral core

and consequently more attractive interaction between the radical and the excess electron.

Consequently, metastable states undergo gradual stabilization and they turn into stable

bound states for some molecular size. This trend is also illustrated in Fig. 5 when the

excited states move down, below the lowest neutral threshold (marked with black solid or

Eex(⇡⇡
⇤) =

�� sin
⇡

2(1 +N)



Resonances and bound states in cynanopolyyenes
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Trends in all ππ⋆  states can be fit to Huckel model with  
 β=3.2-4.1



Conclusions 
1. Resonances offer new opportunities for chemistry: New 

reaction pathways via electron-attached states.  
2. Non-Hermitian QM: EOM-CC + CAP approaches: robust 

and uniform framework for bound and unbound states of 
different types (super-excited states, transient anions, 
core-level states).  

3. Opportunity to test and extend important chemical 
concepts into a new domain. Examples: Dyson orbitals, 
Natural Transition Orbitals, Huckel theory, and more.
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