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Radiation Transport 
 



Basic assumptions 
 

Classical / Semi-classical description – 

•  Radiation field described by either specific intensity Iν or the photon 
distribution function fν  

•  Unpolarized radiation 

•  Neglect index of refraction effects (n≈1, ω>>ωp) 
 è Photons travel in straight lines 

•  Neglect true scattering (mostly) 

•  Static material (for now) 
 è Single reference frame 



Macroscopic - specific intensity Iν   
•  energy per (area x solid angle x time) within 

the frequency range 
 
 

•  dE = energy crossing area dA within 
   

Microscopic - photon distribution function 

Radiation Description 
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0th moment  = energy density x c/4π 

1st moment  = flux x 1 /4π 

2nd moment  = pressure tensor x c /4π 

 

For isotropic radiation, Kν is diagonal with equal elements: 

 
 

In this case, radiation looks like an ideal gas with    = 4/3 
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Thermal Equilibrium 
 

Intensity: Planck function             Distribution function: Bose-Einstein   
 
 
 
 
Energy density 
 
 
 
For Te=Tr  and nH = 1023 cm-3 : 
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Erad = Ematter ⇔ T ≈ 300eV

LTE	(Local	Thermodynamic	Equilibrium)	-	
	par8cles	have	thermal	distribu8ons	(Te,	Ti)	
	photon	distribu8on	can	be	arbitrary	



•  Boltzmann equation for the photon distribution function: 

•  The LHS describes the flow of radiation in phase space 
•  The RHS describes absorption and emission 

•  Absorption & emission coefficients depend on atomic physics 
•  Photon # is not conserved (except for scattering) 

•  Photon mean free path 

Radiation Transport Equation 
 

  = absorption coefficient (fraction of energy absorbed per unit length) 
 

  = emissivity (energy emitted per unit time, volume, frequency, solid angle) 
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Characteristic Form 
 

Define the source function Sν and optical depth τν: 
    Sν = ην/αν  = Bν  in LTE      dτν = αν ds 
 
Along a characteristic, the radiation transport equation becomes 
 
 
 

This solution is useful when material properties are fixed, e.g. 
postprocessing for diagnostics 
 
Important features: 
•  Explicit non-local relationship between Iν and Sν  
•  Escaping radiation comes from depth τν ≈ 1 
•  Implicit Sν(Iν)  dependence comes from radiation / material coupling 

	

  

dIv

dτ v

= − Iv + Sv ⇒ Iv τ v( ) = Iv 0( )e−τ v + e− τ v− ′τν( )Sv ′τν( )
0

τ v∫ d ′τν

Self-consistently determining Sν and Iν is 
the hard part of radiation transport 



Limiting Cases 
 

Optically-thin  τν<<1 (viewed in emission): 
    
 
 

Iν reflects spectral characteristics of emission, independent of absorption 
 
Optically-thick  τν>>1: 
    
 
 

Iν reflects spectral characteristics of Sν (over ~last optical depth)	
 
Negligible emission (viewed in absorption): 
    
 
 

Iν / Iν(0) reflects spectral characteristics of absorption 
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Example – Flux from a uniform sphere 

Kr @ T = 200 eV, ρ = 0.01 g/cc, LTE 

Δr	=	0.001	cm	
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Absorption / emission coefficients 
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Plasma Physics  
Division 

The simulated and experimental K-shell 
spectra reveal plasma conditions in the 
emitting region are Te~3.5 keV and   
ne ~ 3x1022 cm-3. 
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Macroscopic description – energy changes 
•  Energy removed from radiation passing through material of area dA, 

depth ds, over time dt
 

•  Energy emitted by material 
 
 

Microscopic description – radiative transitions 
•  Absorption and emission coefficients are 

constructed from atomic populations yi and 
cross sections σij: 
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Bound-bound Transitions 
 

Probability (per unit time) of 
•  Spontaneous emission:  A21 
•  Absorption:     B12 
•  Stimulated emission:  B21 

A21, B12, B21 are Einstein coefficients 

2 g2
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n2

g1 n1

Two energy level system

g1B21 = g2B12 , A21 =
2hv0

3

c2
B21

J
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∫ dν =1

Line profile         measures probability of absorption 
 
φ v⎛⎝ ⎞

⎠

Transition rate from level 1 to level 2 

  
R12 = B12J , J = Jv0

∞

∫ φ v( )dv

ΔE = hv0

(assuming that the linewidth << ΔE) 

J



  

αν = n1

πe2

mc
f12φ v( ) 1−

g1n2

g2n1

⎡

⎣
⎢

⎤

⎦
⎥

ην =
2hν 3

c2

⎛
⎝⎜

⎞
⎠⎟

n2

πe2

mc
f12φ v( )

Absorption and emission coefficients: 

absorp8on		–		s8mulated	emission	
	
	
spontaneous	emission	

  
σ v( ) = hvo

4π
B21φ v( ) = πe2

mc
f12φ v( )

Cross section for absorption 

Oscillator strength f12 relates the quantum mechanical result 
to the classical treatment of a harmonic oscillator 

•  Strong transitions have f ~1 

•  Sum rule    (# of bound electrons)   fij = Z
j
∑

For now we are assuming that absorption and emission have the 
same line profile 

  

f12 = oscillator strength

πe2

mc
=0.02654 cm2 /s



Bound-free absorption 
 

Free-free absorption 
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and charge Z 

Absorption cross section per ion of charge Z 

Gaunt	factor	   hv0 = threshold	energy	
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Scattering 

Interaction in which the photon energy is (mostly) conserved (i.e. not converted to 
kinetic energy) 
 

Examples: 
 Scattering by bound electrons – Rayleigh scattering 
  - important in atmospheric radiation transport 
 Scattering by free electrons – Thomson / Compton scattering 

 
 

  Note: frequency shift from scattering is  ~ 

     Doppler shift from electron velocity is  ~ 
 
For most laboratory plasmas, these types of scattering are negligible 
 
Note: X-ray Thomson scattering (off ion acoustic waves and plasma oscillations) 
can be a powerful diagnostic for multiple plasma parameters (Te, Ti, ne) 
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Radiation transport equation with scattering (and frequency changes):  
 

 
 
 
 
 
 

The redistribution function R describes the scattering of photons (ν,Ω) è (ν’,Ω’) 
 

Neglecting frequency changes, this simplifies to 
 
 
 
 
Scattering contributes to both absorption and emission terms (and may be 

denoted separately or included in αν and ην) 
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Effective scattering 

Photons also “scatter” by e.g. resonant absorption / emission 
 
Upper level 2 can decay 
  a) radiatively  A21 
  b) collisionally  neC21 
 
The fraction 
of photons are destroyed / thermalized 
 
The fraction (1-ε) of photons are “scattered” 

 è energy changes only slightly (mostly Doppler shifts) 
 è undergo many “scatterings” before being thermalized 

 
Note:              is the condition for a strongly non-LTE transition 

      and is easily satisfied for low density or high ΔE !  
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Two energy level system

ε ≈ neC21 / A21

 ε 1



Population distribution 

LTE:  Saha-Boltzmann equation 

•  Excited states follow a Boltzmann distribution 

•  Ionization stages obey the Saha equation 

NLTE: Collisional-radiative model 
•  Calculate populations by integrating rate equations 
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•  Summed over populations and radiative transitions: 

•  In NLTE, the source function has a complex dependence on plasma 
parameters and on the radiation spectrum: 

•  In LTE, absorption and emission spectra are complex but the 
source function obeys Kirchoff’s law: 

Summary of absorption / emission coefficients 
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Opacity & mean opacities 

opacity = absorption coefficient / mass density  
  

κν =αν ρ

1
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Rosseland mean opacity: 
 emphasizes transmission 
 includes scattering 
 appropriate for average flux 

 

 
Planck mean opacity: 

 emphasizes absorption 
 no scattering 
 appropriate for energy exchange   

0.1

1

10

100

1000

ab
so

rp
tio

n 
co

ef
fic

ie
nt

 (
1/

cm
)

300025002000150010005000
photon energy (eV)

dB/dT

Kr @ T = 200 eV, ρ = 0.01 g/cc, LTE 



10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

ab
so

rp
tio

n 
co

ef
fic

ie
nt

 (
cm

-1
)

0.1 1 10 100
photon energy (eV)

 total
 bound-free
 free-free n=1

n=2
n=3

Example – Hydrogen (Te= 2 eV, ne=1014 cm-3) 
 

absorption coefficient 
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Hydrogen, again (Te= 2 eV, ne=1014 cm-3) 
 

emissivity source	func8on	
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Flux from a uniform sphere - Summary 

200

150

100

50

0
T r

, e
ff

1.00.80.60.40.20.0
r/∆r

 LTE
 NLTE

∆r = 10. cm

∆r = 0.1 cm

∆r = 0.001 cm

§  “Black-body” emission requires 
large optical depths 

§  Large optical depths è high 
radiation fields è	LTE conditions 

§  Boundaries introduce non-
uniformities through radiation 
fields 

§  The radiation field will also 
change the material temperature 

 
Conditions do not remain uniform in the 

presence of radiation transport and boundaries 
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•  Te = 1 eV, ne = 1014 cm-3 
•  Moderate optical depth  τ ~ 5 
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show optical depth broadening 
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Coupled systems  – or –  
What does “Radiation Transport” mean? 

The system of equations and emphasis varies with the application 

For laboratory plasmas, these two sets are most useful -  

LTE / energy transport : 
•  Coupled to energy balance 

 

 

•  Indirect radiation-material coupling 
through energy/temperature  

•  Collisions couple all frequencies 
locally, independent of Jν 

•  Solution methods concentrate on non-
local aspects 

  

dEm

dt
= 4π αν (Jν − Sν )∫ dν

αν =αν (Te ) , Sν = Bν (Te )

NLTE / spectroscopy : 
•  Coupled to rate equations 

•  Direct coupling of radiation to material  
•  Collisions couple frequencies over 

narrow band (line profiles) 
•  Solution methods concentrate on local 

material-radiation coupling 
•  Non-local aspects are less critical 

   

dy
dt

= Ay , A ij =A ij (Te , Jν )

Sν =
2hν3

c2 Sij , Sij ≈ a + b Jij



Line Profiles 

Line profiles are determined by multiple effects: 
•  Natural broadening  (A12)    - Lorentzian 
•  Collisional broadening  (ne, Te)   - Lorentzian 
•  Doppler broadening  (Ti)    - Gaussian 
•  Stark effect (plasma microfields)  - complex 
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Redistribution 

The emission profile        is determined by multiple effects: 
•  collisional excitation è natural line profile (Lorentzian) 
•  photo excitation + coherent scattering 
•  photo excitation + elastic scattering è ~absorption profile 
•  Doppler broadening 
 
This is described by the redistribution function 

Complete redistribution (CRD): 
 
Doppler broadening is only slightly different from CRD, while coherent 
scattering gives 
 
A good approximation for partial redistribution (PRD) is often 
 
 
where f  (<<1 for X-rays) is the ratio of elastic scattering and de-excitation 
rates,        includes coherent scattering and Doppler broadening  

ψν = φν

ψν

  R(ν , ′ν )

  
R(ν , ′ν )

0

∞

∫ dv = φ( ′ν ) , ψ (ν ) = R(ν , ′ν )
0

∞

∫ J ( ′ν )d ′v φ( ′ν )
0

∞

∫ J ( ′ν )d ′v

  R(ν , ′ν ) = φ(ν )δ (ν − ′ν )

  R(ν , ′ν ) = (1− f )φ( ′ν )φ(ν )+ f RII (ν , ′ν )

 RII
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Ly-α emission from a plasma with uniform temperature and density 
•  Te	= 1 eV, ne	= 1014 cm-3 
•  Optical depth  τ ~ 5 
•  Voigt parameter a ~ 0.0003 



Material Velocity 

The discussion so far applies in the reference frame of the material 
 

Doppler shifts matter for line radiation when v/c ~ ΔE/E 
 

If velocity gradients are present, either 
a)  Transform the RTE into the co-moving frame  - or – 
b)  Transform material properties into the laboratory frame 
 

Option (a) is complicated (particularly when v/c è 1) 
 - see the references by Castor and Mihalas for discussions 

 

Option (b) is relatively simple, but makes the absorption and 
emission coefficients direction-dependent 



Al sphere w/ uniform expansion velocity 
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He-α Ly-α 



2-Level Atom 

Rate equation for two levels in steady state: 
 
 
 
 
 
Absorption / Emission: 
 
 
 
Source Function: 

2 g2

1

n2

g1 n1

Two energy level system
n1(B12J12 +C12 ) = n2 (A21 + B21J12 +C21)

  
J12 = Jv0

∞

∫ φ12 v( )dv , C12 =
g2
g1

e−hν0 kTC21
ΔE = hv0

αν =
hν
4π

n1B12 − n2B21( )φ12 (ν ) , ην =
hν
4π

n2A21φ12 (ν )

Sν =
n2A21

n1B12 − n2B21
= (1− ε )J12 + εBν , ε

1− ε
=C21

A21
1− e−hν0 kT( )

Sν is independent of frequency and linear in      
 - solution methods exploit this dependence 

J



A Popular Solution Technique 

For a single line, the system of equations can be expressed as 
 
 
 
 
 
where the lambda operator      and the source function depend on the 
populations through the absorption and emission coefficients. 
 
A numerical solution for     uniquely specifies the entire system. 
 
Since        depends on      through the populations, the full system is 
non-linear and requires iterating solutions of the rate equations and 
radiation transport equation. 
 
The dependence of      on    is usually weak, so convergence is rapid. 

   

dIv

dτ v

= − Iv + Sv ⇒ Iv =

λνSv (J )

Sv = aν + bν J , J = 1
4π

dΩ∫ Iv0

∞

∫ φ v( )dv

 

λν

J

J

J

 

λν

 

λν



Solution technique for the linear source function: 
 
 
 
 
 
 
 
 
 
This linear system can (in principle) be solved directly for 
and in 1D this is very efficient   
 
The (angle,frequency)-integrated operator       includes  
factors, so               amplifies      (radiation trapping) 
 
Efficient solution methods approximate key parts of 

 NLTE – local frequency scattering 
 LTE (linear in ΔTe) – non-local coupling 

   

Iv =

λν aν + bν J⎡⎣ ⎤⎦

⇒ J = 1
4π

dΩ∫

λν aν + bν J⎡⎣ ⎤⎦0

∞

∫ φ v( )dv

⇒ J = 1−

Λ⎡⎣ ⎤⎦

−1 1
4π

dΩ∫

λνaν0

∞

∫ φ v( )dv


Λ = 1

4π
dΩ∫


λνbν0

∞

∫ φ v( )dv

J

J
 

Λ

  
1−

Λ⎡⎣ ⎤⎦

−1
1− e−τν

 

Λ



For multiple lines, the source function for each line can be put in the 
two-level form – ETLA (Extended Two Level Atom) – or the full 
source function can be expressed in the following manner:  
 
 
 
 
Solve for each     individually (if coupling between lines is not 
important) or simultaneously. 
 
(Complete) linearization – expand     in terms of  
 
 
 
and solve as before. 
 
Partial redistribution usually converges at a slightly slower rate. 

 J


   

Sv =
ην

c + ην
ℓ(Jℓ )φν

ℓ

ℓ
∑

αν
c + αν

ℓ(Jℓ )φν
ℓ

ℓ
∑

Multi-Level Atom 

Sν   ΔJℓ

 
Sν =Sν (Jℓ

0 )+ ∂Sν
∂Jℓ

Jℓ − Jℓ
0( )

ℓ
∑



Numerical methods need to fulfill 2 requirements 

1.  Accurate formal transport solution which is 
•  conservative, 
•  non-negative 
•  2nd order (spatial) accuracy  (diffusion limit as τ >> 1) 
•  causal (+ efficient) 
 
Many options are available – each has advantages and disadvantages 

2.  Method to converge solution of coupled implicit equations 
•  Multiple methods fall into a few classes 

–  Full nonlinear system solution 
–  Accelerated transport solution 
–  Incorporate transport information into other physics 

•  Optimized methods are available for specific regimes, but no single 
method works well across all regimes 



Method #1 – Source (or lambda) iteration 

Advantages – 
 Simple to implement 
 Independent of formal transport method 

 
Disadvantages – 

 Can require many iterations:  # iterations ~ τ2
 False convergence is a problem for τ >> 1 

1.  Evaluate source function 
2.  Formal solution of radiation 

transport equation 
3.  Use intensities to evaluate 

temperature / populations 

iterate	to	
convergence	



Hydrogen Lyman-α revisited 
•  Source iteration (green curves) approaches self-consistent solution slowly 
•  Linearization achieves convergence in 1 iteration 

  Sij = a + b Jij , Jij = Jνφv dν∫ ç	linear	func8on	of	
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Method #2 – Monte Carlo 
Formal solution method – 
1)  Sample emission distribution in (space, frequency, direction) to create “photons” 
2)  Track “photons” until they escape or are destroyed 

Advantages – 
     Works well for complicated geometries 
     Not overly constrained by discretizations è does details very well 
 
Disadvantages – 
     Statistical noise improves slowly with # of particles 
     Expense increases with optical depth 
     Iterative evaluation of coupled system is not possible / advisable 
     Semi-implicit nature requires careful timestep control 
 
Convergence – 
     A procedure that transforms absorption/emission events into effective 
     scatterings (Implicit Monte Carlo) provides a semi-implicit solution 
 
     Symbolic IMC provides a fully-implicit solution at the cost of a solving a 
     single mesh-wide nonlinear equation 



Method #3 – Discrete Ordinates (SN) 
Formal solution method – 

 Discretization in angle converts integro-differential equations into a set of coupled 
 differential equations      (provides lambda operator) 

 
Advantages – 
     Handles regions with τ<<1 and τ>>1 equally well 
     Modern spatial discretizations achieve the diffusion limit 
     Deterministic method can be iterated to convergence 
 
Disadvantages – 
     Ray effects due to preferred directions 
          angular profiles become inaccurate well before angular integrals  
     Required # of angles in 2D/3D can become enormous 
     Discretization in 7 dimensions requires large computational resources 
 
Convergence – 

 Effective solution algorithms exist for both LTE and NLTE versions [6] – 
 e.g.  LTE – synthetic grey transport (or diffusion) 

          NLTE – complete linearization     (provides linear source function) 
     + accelerated lambda iteration in 2D/3D 
 
(Note: this applies to all deterministic methods) 
 



Method #4 – Escape factors 
Escape factor pe is used to eliminate radiation field from net radiative rate 
 
 
 
Equivalent to incorporating a (partial) lambda operator into the rate equations 
è combines the formal solution + convergence method 
 
Advantages – 
     Very fast – no transport equation solution required 
     Can be combined with other physics with no (or minimal) changes 
 
Disadvantages – 
     Details of transport solution are absent 
     Escape factors depend on line profiles, system geometry 
     Iterative improvement is possible, but usually not worthwhile 

yjBjiJ − yiBij J = yjAji pe



Escape factor is built off the single flight escape probability 
 
 
 
 
Iron’s theorem – this gives the correct rate on average 

       (spatial average weighted by emission) 
 
  
 
Note that the optical depth depends on the line profile, plus continuum 
 
Asymptotic expressions for large optical depth: 

 Gaussian profile     Voigt profile 
 
 
 
Evaluating pe can be complicated by overlapping lines, Doppler shifts, etc. 
 
Many variations and extensions exist in a large literature 

  
pe =

1
4π

dΩ∫ e−τν
0

∞

∫ φ v( )dv

1− J S = pe

e−τν

pe ≈1 4τ ln τ π( ) pe ≈ 1
3 a τ



References 

Stellar Atmospheres, 2nd edition, D. Mihalas, Freeman, 1978. 
 
Theory of Stellar Atmospheres: An Introduction to Astrophysical Non-

equilibrium Quantitative Spectroscopic Analysis, I. Hubeny and D. Mihalas, 
Princeton, 2014. 

 
Radiation Hydrodynamics, J. Castor, Cambridge University Press, 2004. 
 
Kinetics Theory of Particles and Photons (Theoretical Foundations of Non-

LTE Plasma Spectroscopy), J. Oxenius, Springer-Verlag, 1986. 
 
Radiation Trapping in Atomic Vapours, A.F. Molisch and B.P. Oehry, Oxford 

University Press, 1998. 
 
Radiation Processes in Plasmas, G. Bekefi, John Wiley and Sons, 1966. 
 
Computational Methods of Neutron Transport, E.E. Lewis and W.F. Miller, Jr., 

John Wiley and Sons, 1984. 
 


