

Line Intensities, Collisional-Radiative Modeling...and everything else

Yuri Ralchenko

National Institute of Standards and Technology Gaithersburg, MD 20899, USA

Where does the story begin?..

What happens here?

Spectral Line Intensity (optically thin)

National Institute of Standards and Technology

Rates

Z-scalings of atomic parameters

- Radiative (A ~ $f \cdot \Delta E^2$)
 - $\Delta n = 0$
 - $\Delta \mathbf{E} \sim \mathbf{Z}$
 - $f \sim Z^{-1}$
 - A ~ Z
 - $\Delta n \neq 0$
 - $\Delta \mathbf{E} \sim \mathbf{Z}^2$
 - *n*-dependence
 - $\mathbf{A} \sim n^{-3}$

$$A_Z(n) \approx 1.6 \times 10^{10} \frac{Z^4}{n^{9/2}}$$

E1 only! Forbidden: Z⁶-Z¹²

- Collisional ($\sigma \sim f/\Delta E^2$)
 - $\Delta n = 0$
 - σ ~ Z⁻³
 - $< \sigma \cdot v > \sim Z^{-2}$
 - $\Delta n \neq 0$ • $\sigma \sim Z^{-4}$ • $\langle \sigma \cdot v \rangle \sim Z^{-3} \rangle$
 - *n*-dependence • $\sigma \sim n^4$

Thermodynamic equilibrium

- Principle of detailed balance
 - each direct process is balanced by the inverse
 - excitation \leftrightarrow deexcitation
 - ionization \leftrightarrow 3-body recombination
 - photoionization ↔
 photorecombination
 - autoionization ↔
 dielectronic capture
 - radiative decay (spontaneous+stimulated)
 ↔ photoexcitation

TE: distributions

- Four "systems": **photons**, **electrons**, **atoms** and **ions**
- Same temperature $T_r = T_e = T_i$
- We know the equilibrium distributions for each of them
 - Photons: Planck
 - Electrons: Maxwell
 - Populations within atoms/ions: Boltzmann
 - Populations between atoms/ions: Saha

TE: energy scheme

Planck and Maxwell

Planck distribution

$$B(E) = \frac{2E^{3}}{h^{2}c^{2}} \frac{1}{e^{E/T} - 1}$$

Maxwell distribution

$$f_M(E)dE = \frac{2}{\pi^{1/2}T_e^{3/2}}E^{1/2}\exp\left(-\frac{E}{T_e}\right)dE$$

NIST National Institute of Standards and Technology

Saha Distribution

$$\frac{N^{Z+1}}{N^{Z}} = \frac{g_{Z+1}}{g_{Z}} 2\left(\frac{2\pi mT_{e}}{h^{2}}\right)^{3/2} \frac{1}{N_{e}} e^{-\frac{I_{Z}}{T_{e}}}$$
$$g_{Z} = \sum_{i} g_{Z,i} e^{-\frac{E_{i}-E_{0}}{T_{e}}}$$

Which ion is the most abundant?

$$\frac{N^{Z+1}}{N^{Z}} = 1 \qquad \frac{I_{Z}}{T_{e}} >> 1 \left(\sim 10\right)^{2}$$

NIST National Institute of Standards and Technology

Local Thermodynamic Equilibrium

- (Almost) never complete TE: photons decouple easily...therefore, let's forget about the photons!
- LTE = Saha + Boltzmann + Maxwell
- Griem's criterion for Boltzmann: *collisional rates* > 10*radiative rates

$$N_{e}[cm^{-3}] > 1.4 \times 10^{14} (\Delta E_{01}[eV])^{3} (T_{e}[eV])^{1/2} \propto Z^{7}$$

H I (2 eV): 2×10¹⁷ cm⁻³ C V (80 eV): 2×10²² cm⁻³

• Saha criterion for low T_e:

$$N_{e}[cm^{-3}] > 1 \times 10^{14} (I_{z}[eV])^{5/2} (T_{e}[eV])^{1/2} \propto Z^{6}$$

H I (2 eV): 10¹⁷ cm⁻³ C V (80 eV): 3×10²¹ cm⁻³

LTE Line Intensities

- No atomic data (only energies and statweights) are needed to calculate populations
- Intensity ratio $\frac{I_1}{I_2} = \frac{N_1 \Delta E_1 A_1}{N_2 \Delta E_2 A_2} = \frac{g_1 \Delta E_1 A_1}{g_2 \Delta E_2 A_2} \exp\left(-\frac{E_1 E_2}{T_e}\right)$
- Or just plot the intensities on a log scale:

Aragon et al, J Phys B 44, 055002 (2011)

Saha-LTE conclusions

- Collisions >> radiative processes
 - Saha between ions
 - Boltzmann within ions
- Since collisions decrease with Z and radiative processes increase with Z, higher densities are needed for higher ions to reach Saha/LTE conditions
 - H I: 10¹⁷ cm⁻³
 - Ar XVIII: 10²⁶ cm⁻³

ASD: can calculate Saha/LTE spectra!!!

Deviations from LTE

- Radiative processes are non-negligible
 - LTE: coll.rates (~n_e) > 10*rad.rates
- Non-Maxwellian plasmas
- Unbalanced processes
- Anisotropy
- External fields

	excited	states
Radiative (~n ⁻³)		Collisional (~n ⁴)

The other limiting case: Coronal Equilibrium

Low electron densities!

Next big: Aug 21, 2017

Coronal model

- Excitations (and ionization) only from ground state...
- ...and metastables
- $A_{rad} \sim N_e^{0}$, $R_{coll} \sim N_e$ or N_e^{2}
- Does require a complete set of collisional cross sections
- Do we have to calculate all direct and inverse processes?..

Excitation↔ Deexcitation

Principle of detailed balance:

$$N_i N_e \left\langle v \sigma_{ij} \right\rangle = N_j N_e \left\langle v \sigma_{ji} \right\rangle$$

In thermodynamic equilibrium:

Only Maxwell is needed here!

$$g_{i}\int_{\Delta E}^{\infty} \left(\frac{2E}{m}\right)^{1/2} \sigma_{ij}(E) E^{1/2} e^{-\frac{E}{T}} dE = g_{j} e^{-\frac{\Delta E}{T}} \int_{0}^{\infty} \left(\frac{2E'}{m}\right)^{1/2} \sigma_{ji}(E') E^{1/2} e^{-\frac{E'}{T}} dE'$$

Substitution: $E \Rightarrow E + \Delta E$

Ni

Ni

$$g_{i}\int_{0}^{\infty} \left(E + \Delta E_{ij}\right) \sigma_{ij}\left(\varepsilon + \Delta E\right) e^{-\frac{E}{T}} dE = g_{j}\int_{0}^{\infty} E \sigma_{ji}(E) e^{-\frac{E}{T}} dE$$

Must be valid for any T, therefore:

$$g_{i}(E + \Delta E)\sigma_{ij}^{exc}(E + \Delta E) = g_{j}E\sigma_{ij}^{dxc}(E)$$

NIST National Institute of Standards and Technology

Line Intensities under CE

If more than one radiative transition:

Also cascades may be important

Most abundant ion:

$$\frac{I_Z}{T_e} \sim 3 \left(Z_N < 30 \right)$$

Ionization Balance in CE

National Institute of Standards and Technology

Ionization Balance in a General Case

NIST National Institute of Standards and Technology

From Corona to PLTE

National Institute of Standards and Technology

Basic rate equation

$$\hat{N} = \begin{pmatrix} \dots \\ N_{Z,i} \\ \dots \end{pmatrix}$$
 Vector of at populations

$$\frac{d\hat{N}(t)}{dt} = \hat{A}(t, \hat{N}(t), N_e, N_i, T_e, T_i...) \cdot \hat{N}(t) + \hat{S}(t)$$

Rate matrix

Source function

Off-diagonal: total rates of all processes between two levels Diagonal: total destruction rates for a level

Basic rate equation (cont'd)

$$\begin{split} \frac{dN_{Zi}}{dt} &= \sum_{j < i} N_{Z,j} \Big(R_{Z,ji}^{e-exc} + R_{Z,ji}^{h-exc} + B_{Z,ji}^{p-exc} \Big) \\ &+ \sum_{j > i} N_{Z,j} \Big(R_{Z,ji}^{e-dexc} + R_{Z,ji}^{h-dexc} + A_{Z,ji}^{sp-rad} + B_{Z,ji}^{st-rad} \Big) \\ &+ \sum_{Z' > Zk \in Z'} N_{Z',k} \Big(\alpha_{Z'k,Zi}^{3b} + \alpha_{Z'k,Zi}^{rr} + \alpha_{Z'k,Zi}^{dc} + \alpha_{Z'k,Zi}^{cx} \Big) \\ &+ \sum_{Z' < Zk \in Z'} N_{Z',k} \Big(S_{Z'k,Zi}^{e-ion} + S_{Z'k,Zi}^{i-ion} + S_{Z'k,Zi}^{p-ion} + S_{Z'k,Zi}^{cx} \Big) \\ &- N_{Z,i} \times \\ &(\sum_{j > i} \Big(R_{Z,ij}^{e-exc} + R_{Z,ij}^{h-exc} + B_{Z,ij}^{p-exc} \Big) + \sum_{j < i} \Big(R_{Z,ji}^{e-dexc} + R_{Z,ji}^{h-dexc} + A_{Z,ji}^{sp-rad} + B_{Z,ji}^{st-rad} \Big) \\ &+ \sum_{Z' < Zk \in Z'} \Big(\alpha_{Zi,Z'k}^{3b} + \alpha_{Zi,Z'k}^{rr} + \alpha_{Zi,Z'k}^{dc} + \alpha_{Zi,Z'k}^{cx} \Big) \\ &+ \sum_{Z' < Zk \in Z'} \Big(S_{Zi,Z'k}^{3b} + \alpha_{Zi,Z'k}^{rr} + \alpha_{Zi,Z'k}^{dc} + \alpha_{Zi,Z'k}^{cx} \Big) \\ &+ \sum_{Z' < Zk \in Z'} \Big(S_{Zi,Z'k}^{e-ion} + S_{Zi,Z'k}^{i-ion} + S_{Zi,Z'k}^{p-ion} + S_{Zi,Z'k}^{cx} \Big) \Big) \\ &+ S_i \end{split}$$

National Institute of Standards and Technology

CR model: features

- 1. Most general approach to population kinetics
- 2. Depends on detailed atomic data and requires a lot of it...
- 3. Should reach Saha/LTE conditions at high densities and coronal at low
- 4. May includes tens up to millions of atomic states

CR model: questions to ask

- 1. What state description is relevant?
- 2. What are the most (and not so) important physical processes?
- 3. How to calculate the rates? What is the source of the data?
- 4. Which level of data accuracy is sufficient for this particular problem?
- 5. Which plasma effects are important? Opacity? IPD?

There is NO universal CR model for all cases

16-electron ion (S-like)

Even parabolic states for motional Stark effect!

General principles for line intensity ratio diagnostics

- Electron density
 - Collisional dumping (density-dependent outflux)
 - Density-dependent influx

- Electron temperature
 - Different parts of Maxwellian populate different lines (upper levels)

Why are the forbidden lines sensitive to density?

Let put him into a formula:

Strong transition

$$N_{g}n_{e}\langle\sigma\nu\rangle_{g1} = N_{1}A_{1} + N_{g}n_{e}\langle\sigma\nu\rangle_{g2} = N_{2}A_{2} + N_{2}n_{e}\langle\sigma\nu\rangle_{2}$$

N T

$$\begin{split} N_{1} &= \frac{N_{g} n_{e} \langle \sigma v \rangle_{g1}}{A_{1}} \\ N_{2} &= \frac{N_{g} n_{e} \langle \sigma v \rangle_{g2}}{A_{2} + n_{e} \langle \sigma v \rangle_{2}} \end{split}$$

 $M \sim (-\infty)$

$$\frac{N_1 A_1}{N_2 A_2} = \frac{\langle \sigma v \rangle_{g1}}{\langle \sigma v \rangle_{g2}} \cdot \frac{A_2 + n_e \langle \sigma v \rangle_2}{A_2}$$

E.g., resonance to intercombination lines in He-like ions

Temperature diagnostics with DS

Independent of ionization balance since the initial state is the same!

Temperature dependence: Ly_{α} satellites

NIST National Institute of Standards and Technology

Density diagnostics with DS

Ne X Ly_{α} and satellites *1snl-2pnl*

C.
$$1s2p {}^{1}P_{1} - 2p^{2} {}^{1}D_{2}$$
 (J satellite)

He-like lines and satellites

O.Marchuk et al, J Phys B 40, 4403 (2007)

NIST National Institute of Standards and Technology

Energy levels in He-like Ar

- Ground state: $1s^2 {}^1S_0$
- Two subsystems of terms
 - Singlets 1snl ¹L, J=l (example 1s3d ¹D₂)
 - Triplets **1***snl* ³**L**, J=l-1, l, l+1 (example 1s2p ³**P**_{0,1,2})
- Radiative transitions within each subsystem are strong, between systems depend on Z

He-like Ar Levels and Lines

Z-scaling of A's

- W[E1]: A($1s^2 {}^{1}S_0 1s2p {}^{1}P_1$) $\propto \mathbb{Z}^4$
- Y[E1]: A($1s^{2} {}^{1}S_{0} 1s2p {}^{3}P_{1}$)
 - $\propto Z^{10}$ for low Z
 - $\propto Z^8$ for large Z
 - $\propto Z^4$ for very large Z
- X[M2]: A($1s^2 {}^{1}S_0 1s2p {}^{3}P_2$) $\propto \mathbb{Z}^8$
- Z[M1]: A(1 $s^2 {}^1S_0 1s2s {}^3S_1) \propto \mathbb{Z}^{10}$

n=2 populations

Ar XVII Line Ratios

1s2Inl satellites

- 1|2|2|'
 - 1s2s²: ²S_{1/2}
 - 1s2s2p:
 - 1s2s2p(¹P) ²P_{1/2,3/2}
 - 1s2s2p(³P) ²P_{1/2,3/2}; ⁴P_{1/2,3/2,5/2}
 - 1s2p²
 - 1s2p²(¹D) ²D_{3/2,5/2}
 - 1s2p²(³P) ²P_{1/2,3/2}; ⁴P_{1/2,3/2,5/2}
 - 1s2p²(¹S) ²S_{1/2}
- 1s2lnl'
 - Closer and closer to W
 - Only 1s2l3l can be reliably resolved
 - Contribute to W line profile

Most Abundant Ions: high Z

Ionization decreases faster with Z than recombination: recombination becomes relatively stronger

Time-Dependent Corona

NIST National Institute of Standards and Technology

Local thermodynamic equilibrium (LTE)

Coll Yang Photons National Institute of Standards and Technology

LTE

- High densities
 - H: 10¹⁷ cm⁻³
 - Ar¹⁷⁺: 10²⁵ cm⁻³
- Does NOT require collisional cross sections, only energy levels (and radiative transition probabilities)
- "statistical" is often used for small energy differences: $\underbrace{N_i = g_i}_{\text{exp}} = \underbrace{R_i}_{\text{exp}}$

 $-E_{i}$

NIST Atomic Spectra Database

Low N_e: coronal limit

• Excitations (and ionization) only from ground state and metastables

• $A_{rad} \sim N_e^{0}$, $R_{coll} \sim N_e$ or N_e^{2}

• Does require a complete set of collisional cross sections

• Line intensities do not depend on radiative transition probabilities! (mostly)

$$N_g \cdot R_{gi}^{exc} = N_i \cdot A_{ij}$$

Collisional-radiative modeling of plasma emission

General 2-Level Case

Balance equation:

$$N_{g}R_{exc} = N_{1}R_{dxc} + N_{1}A_{rad}$$
$$\frac{N_{1}}{N_{g}} = \frac{R_{exc}}{R_{dxc} + A_{rad}} = \frac{g_{1}}{g_{g}}\frac{e^{-\Delta E/T}}{1+W}, \quad W = \frac{A_{rad}}{N_{e}\langle v\sigma_{dxc} \rangle}$$

Time-dependent case:

$$\frac{dN_{1}(t)}{dt} = N_{g}(t)R_{exc} - N_{1}(t)R_{dxc} - N_{1}(t)A_{rad}$$

$$N_{g} + N_{1} = \tilde{N}$$

$$\frac{dN_{1}(t)}{dt} = \tilde{N}R_{exc} - N_{1}(t)(R_{exc} + R_{dxc} + A_{rad})$$

$$N_{1}(t) = \frac{\tilde{N}R_{exc}}{R_{exc} + R_{dxc} + A_{rad}} \left(1 - e^{-(R_{exc} + R_{dxc} + A_{rad})t}\right)$$
But: $\tau_{eq} \approx \frac{1}{R_{exc} + R_{dxc} + A_{rad}}$

NIST National Institute of Standards and Technology

Other direct \leftrightarrow inverse

• $A + e \leftrightarrow A^+ + e + e$ (ionization and 3-body recomb.)

$$g_{z}\langle \mathbf{v}\boldsymbol{\sigma}_{i}\rangle = 2\left(\frac{mT}{2\pi\hbar^{2}}\right)^{3/2}g_{z+1}\langle\langle \mathbf{v}_{1}\mathbf{v}_{2}\boldsymbol{\sigma}_{3br}\rangle\rangle\exp\left(-\frac{I_{z}}{T}\right)$$

• $A + hv \leftrightarrow A^+ + e$ (photoionization and photorecombination)

$$g_z \sigma_{pi}(hv) = \frac{2mc^2 E}{h^2 v^2} g_{z+1} \sigma_{pr}(E), \qquad hv = E + I_z \qquad \text{Milne formula}$$

Conclusion: only *direct* cross sections are sufficient

