
  

I.  Role of shake-up transitions on the Auger cascades
of light and medium elements

From: wiki.utep.eduElectron emission from (inner-shell) excited states:

A* A+(*)   +   e-
Auger                         dominant process

           A++  +  e-
Auger  +  ...        Auger cascades

A++(*)  +  e-
Auger,1  +  e-

Auger,2     double Auger decay

A++(*)  +  e-
Auger   +  h              radiative Auger decay



  

Multiple ionization of noble gases @ synchrotrons
                                     -- coincidence techniques using a magnetic bottle

Double Auger decay of 
3d-ionized krypton

  Coincidence on 3d photo electron        
         as first arrival electron.

  Six stripes arise from combination       
        of 3d hole states and the 4S, 2D         
       and 2P finals states of Kr3+ 4p−3 

 Dark spots refer to Auger lines.

Kr → Kr3+

E. Andersson et al, PRA 82 (2010) 043418.



  

E. Andersson et al, PRA 82 (2010) 043418.
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Multiconfiguration expansions

Construct a `physically motivated' basis 
in the N-electron Hilbert space.

ψα(PJ M )=∑
r

nc

cr (α) γr P J M>

Different `systematic' approaches exist 
          – to describe the electronic structure of atoms and ions 

  Many-particle character
 „electronic correlations“

Shell structure
static vs. dynamic correlations

Direct vs. indirect effects
QED corrections

  Relativistic effects

Generalization of the knowledge about (Dirac's) one- or few-electron atoms in 
such a way to enable the „computation“ of heavy atoms and ions.



  

Calculations helped identify new 
levels and decay pathes in the 
sequential (auto-) ionization.

RATIP
Relativistic Atomic Transition 

and Ionization Properties
CPC 183 (2012) 1525  &  CPC library
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S. Fritzsche, JESRP 114-116 (2001) 1155; Comput. Phys. Commun. 183 (2012) 1525



  
PIPE –  Photon-Ion spectrometer at PETRA III

(Hamburg)

Renewed interest on Auger cascades
                       – PIPE @ soft x-ray beamline of PETRA III

 S. Schippers and coworkers, Gießen, Frankfurt, Hamburg collaboration (2015).

Experimental set-up:
  photon-ion merged-beams technique
   resolving power up to 13000
   double and triple detachment
   widths, branching fractions



  

Double & triple photodetachment of oxygen anions
                                                   -- exploring the 1s-1 → 2p6  resonance

O- (1s2 2s2 2p5)  +    →  O-(1s 2s2 2p6  2S1/2)  →  O(m-1)+ (1s2 2l7-m)  + m e- 

S. Schippers et al, PRA 94 (2016)  in print.

O- (1s-1 → 2p6)  resonance:
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Double & triple photodetachment of oxygen anions
                                                   -- exploring the 1s-1 → 2p6  resonance

O- (1s2 2s2 2p5)  +    →  O-(1s 2s2 2p6  2S1/2)  →  O(m-1)+ (1s2 2l7-m)  + m e- 

S. Schippers ett al, PRA 94 (2016) submitted.

Double & triple detachments by Auger electron

emission are energetically forbidden.

    → possible only due to shake-up

                    2s → 3s, 2p → 3p

Correlated quantum dynamics in 

weak radiation fields



  

II.  Light-matter interactions in intense fields 
           – from weak- to strong-field ionization 

Multiphoton ionization                          tunnel ionization                  HH and pairs from vacuum

increasing frequency (photon energy)

ATI

increasing field strength (intensity)

  Excitation & ionization at (ultra-) fast time scales & relativistic photon energies  
  Electron dynamics in intense FEL radiation

       (multi-photon & multi-color ionization; coherently driven dynamics of inner-shell excited;          
     sidebands; decoherence & quantum beats, …)

  Creation and dynamics of warm dense matter
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Light-matter interactions in intense fields 
           – from weak- to strong-field ionization 
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increasing frequency (photon energy)
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Current FEL parameters:
  photon energies 10 eV – 10 keV
  intensities 1013 -1016 W/cm2

  short pulses (few - 50 fs)
  106 -108 photons / target atom

       →  nonlinear processes in the VUV & x-ray region

synchrotrons

8 orders of 
magnitude!

FEL‘s

lasers



  

Two-photon double ionization (TPDI)
                                    --  sequential vs. direct knockout of several electrons

A A+ A++
np6

2P

1S0
1D2
3P0,1,2

1S0

np5

np4

A A+ A++

np6

2P

1S0
1D2
3P0,1,2

1S0

np5

np4

direct sequential

γ

γ

γ

γ

e1+ e2

e2

e1

1/2
3/2

1/2
3/2

dynamical 
        coupling ?

How differs the (dynamical) light-matter coupling 
via real and `virtual' intermediate states ?

M. Braune et al, ICPEAC (2007/2009).



  

Further two- and three-photon processes
                                                                   --  sequential vs. direct ionization

Two-photon
double 
ionization
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 (t →−∞)
ρ̂i

Initial state Final state

(t →+ ∞)
ρ̂f

Based Liouville's  equation

Explicitly time-dependent density operator including spatial degrees of freedom:

direct coupling

ionization &
loss processes

exchange

Collaboration with Alexei Grum-Grzhimailo 

Coherent time evolution of inner-shell excited systems
                                                 – in short-pulse or pump-probe experiments  

Now time-dependent

Atomic (transition & ionization) 
amplitudes from many-body 

theory  (RATIP)
S. Fritzsche, CPC 183 (2012) 1525    



  

 

III.  Atomic interactions with twisted light and electrons
             –  waves with helical wave fronts and orbital angular momentum

  Laguerre-Gaussian beams
  Bessel beams
  Vector beams

Superposition of Bessel beams

Quantum numbers:     kz, kperp, m,  

Topological charge, winding number, 
projection of OAM, ...



  

Twisted photons
                             –  beams with vortex lines and  spiral phase fronts

more than 1500 citations

more than 1500 citations

photon spin                            →  polarization
orbital angular momentum   →  vortex lines & 
                                                           helical phases

New insights into the light-matter 
interaction, including a good 
number of  novel applications

 

C. Yao and M. Padgett, Adv. Optics & Photon. 3 (2011) 161.



  

Solutions of Maxwell's wave equations
             –  using especially Helmholtz' equation for the spatial part  ψ(r)
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(2)  Multipole expansions, spherical waves  (spherical)
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(6)  Bessel beams
             →      and many more that can be realized experimentally today !! 
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(projection of orbital) angular momentum; OAM light.



  

Our recent focus: Bessel beams
                –  with well-defined AM, monochromatic and non-diffractive

 

Vector potential:

Fullfilles Helmholtz's equation.
Probabilities of individual OAM components:

Quantum numbers:     kz, kperp, m

,  



  

Bessel beams  vs.  plane waves
             –  Representation in position, phase and momentum



  

Generation of twisted photons
                                     – due to different experimental techniques

pitch-fork hologram

spiral phase plate

… as well as by several other methods, such as q-plates, spatial & cylindrical mode converters, 
axicons and also integrated circuits. 

C. Yao and M. Padgett, Adv. Optics & Photon. 3 (2011) 161.



  

Photoabsorption  and photoionization of light
             – understanding basic light-matter interactions

  photochemistry
  x-ray source
  optically pumped lasers
  solar cells
  photochromic complexes

Plane-wave light                                               Twisted light 

How differs the photo-absorption and ionization for plane-wave & twisted radiation ?
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Photoionization of diatomic molecules
                        – the atomic version of Youngs' double-slit experiment 

U. Becker, Natrure 474 (2011) 586.  

Scattering of light at the (two) atomic 
centers leads to interferences in the 
observed cross sections.

Fano's model:



  

Photoionization of diatomic molecules
                        – the atomic version of Youngs' double-slit experiment 

U. Becker, Natrure 474 (2011) 586.  

Scattering of light at the (two) atomic 
centers leads to interferences in the 
observed cross sections.

Fano's model:

How does the cross sections differ for twisted light ?



  

Photoionization of diatomic molecules
                        – ionization by twisted light 

plane wave
twisted k = 5 deg
twisted k = 30 deg

f = 1deg, f = 0 deg 

f = 90deg, f = 0 deg 

f = 90deg,     f = 90 deg Ionization of H2
+   if aligned 

under an angle  45o  w.r.t. 
the z-axis (quantization axis).

No oscillations remains in the c.s.
for large opening angles and
at higher photon energies.

A. Peschkov et al., PRA 92  (2015) 043415.

Intensity pofile for h = 5 keV and 
10 keV photons.

Internuclear distance R = 1.32 A



  

Recent research activities of the group
i) Structure and properties of atoms & HCI 
     -- capture, excitation and ionization                       
               processes in strong static fields;                        
               accurate atomic calculations

3d5/2

1s
1/2

iii) Photoionization and photon scattering
     -- direct and sequential (multiple) ionization,          
            Rayleigh scattering, polarization transfer

ii) Auger cascades of light & medium elements
    – systematic treatment of shake-processes;            
           multiple photo-detachment, electrons in plasma

PRE 93 (2016)  061201(R).
PRA 94 (2016)  041401(R).

PRA 93 (2016)  063413.
PRC 93 (2016)  064318.
NJP 18 (2016)  103034.

vi) Interactions with twisted light & electrons
     -- photo-excitation, ionization, Compton                  
            scattering, Mott scattering by Bessel &                
            Laguerre Gaussian beams

PRA 93 (2016)  023418.
PRA 93 (2016)  033409.
PRA 94 (2016)  032503.

EPL 115 (2016) 410010.
PRA 94 (2016)  033420.
PRA 94 (2016)  041402(R).

Kassel -- Darmstadt -- Heidelberg – Oulu  – Jena 



  

Study of atomic processes
and quantum dynamics

Schrödinger equation

Dirac equation

Quantum electrodynamics

Group theory 

Density matrix theory

Summary: combination of quite different (many-particle) techniques
                                        

Combination of different concepts
Use of systematic approximations to describe 
the behaviour of quantum systems:

 Density matrix techniques and spherical tensors 
 Racah's algebra 
 Multiconfigurational expansions (CI, MCDF)
 Many-body perturbation theory (MBPT, CC)
 Green's functions
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