Role of shake-up transitions on the Auger cascades of light and medium elements

From: wiki.utep.edu

Electron emission from (inner-shell) excited states:

A*	A+(*) + e ⁻ _{Auger}	dominant process		
	A++ + e- _{Auger} +	Auger cascades		
	$A^{++(*)}$ + $e_{Auger,1}$ + $e_{Auger,2}$	double Auger decay		
	$A^{++(*)}$ + e_{Auger} + h ω	<mark>radiative</mark> Auger decay		

Multiple ionization of noble gases @ synchrotrons

-- coincidence techniques using a magnetic bottle

 $Kr \rightarrow Kr^{3+}$

Double Auger decay of 3d-ionized krypton

- Coincidence on 3d photo electron as first arrival electron.
- Six stripes arise from combination of 3d hole states and the ⁴S, ²D and ²P finals states of Kr³⁺ 4p⁻³
- Dark spots refer to Auger lines.

E. Andersson et al, PRA 82 (2010) 043418.

Multiple ionization of noble gases @ synchrotrons

-- coincidence techniques using a magnetic bottle

 $Kr \rightarrow Kr^{3+}$

- Coincidence on 3d photo electron as first arrival electron.
- Six stripes arise from combination of 3d hole states and the ⁴S, ²D and ²P finals states of Kr³⁺ 4p⁻³
- Dark spots refer to Auger lines.

Different `systematic' approaches exist

- to describe the electronic structure of atoms and ions

Multiconfiguration expansions

$$\psi_{\alpha}(PJM) = \sum_{r}^{n_{c}} c_{r}(\alpha) \gamma_{r} PJM >$$

Construct a `physically motivated' basis in the N-electron Hilbert space.

Many-particle character "electronic correlations"

Relativistic effects

Shell structure static vs. dynamic correlations

Direct vs. indirect effects QED corrections

Generalization of the knowledge about (Dirac's) one- or few-electron atoms in such a way to enable the "computation" of heavy atoms and ions.

Multiple ionization of noble gases @ synchrotrons

-- coincidence techniques using a magnetic bottle

 $Kr \rightarrow Kr^{3+}$

Double Auger decay of 3d-ionized krypton

- Coincidence on 3d photo electron as first arrival electron.
- Six stripes arise from combination of 3d hole states and the ⁴S, ²D and ²P finals states of Kr³⁺ 4p⁻³
- Dark spots refer to Auger lines.

Calculations helped identify new levels and decay pathes in the sequential (auto-) ionization.

RATIP

Relativistic Atomic Transition, Ionization and Recombination Properties

AUGER: Auger rates, relative intensities, angular distribution & spin polarization parameters.

CESD: Determinant representation of atomic and configuration state functions.

EINSTEIN: Einstein A and B coefficients, transition probabilities & radiative lifetimes.

PHOTO: Ionization cross sections, angular & spin-polarization, alignment of photoions.

ANCO: Angular coefficients for scalar and non-scalar operators. REC: Radiative recombination & electron capture rates, angular parameters.

RELCI: Relativistic configuration interaction wave functions & QED estimates.

REOS: Relaxed-orbital Einstein A and B coefficients, transition probabilities and lifetimes.

TOOLBOX: Level energies and notations; manipuations of file interfaces, miscelaneous.

COULOMB: Exitation amplitudes, (MJ-dependent) cross sections, alignment parameters.

Renewed interest on Auger cascades

Experimental set-up:

- photon-ion merged-beams technique
- resolving power up to 13000
- double and triple detachment
- widths, branching fractions

- PIPE @ soft x-ray beamline of PETRA III

S. Schippers and coworkers, Gießen, Frankfurt, Hamburg collaboration (2015).

Photon energy (eV)

S. Schippers et al, PRA 94 (2016) in print.

 $O^{-}(1s^{2} 2s^{2} 2p^{5}) + \gamma \rightarrow O^{-}(1s 2s^{2} 2p^{6-2}S_{_{1/2}}) \rightarrow O^{(m-1)+}(1s^{2} 2l^{7-m}) + m e^{-1}$

Photon energy (eV)

S. Schippers et al, PRA 94 (2016) in print.

 $O^{\text{-}}\,(1s^2\,2s^2\,2p^5)\ +\ \gamma\ \rightarrow\ O^{\text{-}}(1s\,2s^2\,2p^6\ ^2\text{S}_{_{1/2}})\ \rightarrow\ O^{(\text{m-1})_{+}}\,(1s^2\,2l^{7\text{-m}})\ +\ \text{m\ e^{-}}$

2p²

2s²2p²3p

 0^{2+}

 $2s2p^4$

 $-2s^22p^3$

 0^{1+}

 \rightarrow possible only due to shake-up

80

70

60

50

40

30

20

0

Energy [eV]

2p⁵3s

2s2p⁴3s

10 2s²2p³3p

01-

 $2s \rightarrow 3s, 2p \rightarrow 3p$

S. Schippers et al, PRA 94 (2016) in print.

 $O^{-}(1s^{2} 2s^{2} 2p^{5}) + \gamma \rightarrow O^{-}(1s 2s^{2} 2p^{6-2}S_{1/2}) \rightarrow O^{(m-1)+}(1s^{2} 2l^{7-m}) + m e^{-1}$

 $O^{\text{-}} \left(1s^2 \, 2s^2 \, 2p^5\right) \, + \, \gamma \, \rightarrow \, O^{\text{-}} (1s \, 2s^2 \, 2p^{6-2}S_{_{1/2}}) \, \rightarrow \, O^{(\text{m-1})_{+}} \left(1s^2 \, 2l^{7\text{-m}}\right) \, + \, \text{m e}^{\text{-}}$

80		2.0	T T		$hv + O^- \rightarrow O^+ + 2e^-$
	Width	Branching Fraction		Ratio	
Model	[meV]	0	O^+	0 ²⁺	0 ⁺ /0 ²⁺
Simple	133	0.77	0.23	0.0	_
$2s \rightarrow 3s + 2p \rightarrow 3p$	131	0.78	0.22	\sim 0.0	_
$+~2p^2 \rightarrow 3s^2 + 2p^2 \rightarrow 3p^2$	153	0.64	0.36	0.004	106
$+$ 2s ² \rightarrow 3s ²	161	0.56	0.42	0.016	26
$+$ $2s^2 \rightarrow 3p^2$	174	0.46	0.48	0.059	8.1
$+ 2p^2 ightarrow 3d^2$	166	0.51	0.44	0.042	10.6
exp	164 ± 14	—	—	_	10.3

II. Light-matter interactions in intense fields

- from weak- to strong-field ionization

- Excitation & ionization at (ultra-) fast time scales & relativistic photon energies
- Electron dynamics in intense FEL radiation

(multi-photon & multi-color ionization; coherently driven dynamics of inner-shell excited; sidebands; decoherence & quantum beats, ...)

Creation and dynamics of warm dense matter

Light-matter interactions in intense fields

- from weak- to strong-field ionization

 Excitation & ionization at (ultra-) fast time
 Electron dynamics in intense FEL radiati (multi-photon & multi-color ionization; coher sidebands; decoherence & quantum beats, ...)

Creation and dynamics of warm dense n

Current FEL parameters:

- photon energies 10 eV 10 keV
- intensities 10¹³ -10¹⁶ W/cm²
- short pulses (few 50 fs)
- 10⁶ -10⁸ photons / target atom
 - $\rightarrow\,$ nonlinear processes in the VUV & x-ray region

Light-matter interactions in intense fields

Two-photon double ionization (TPDI)

-- sequential vs. direct knockout of several electrons

Further two- and three-photon processes

-- sequential vs. direct ionization

Coherent time evolution of inner-shell excited systems - in short-pulse or pump-probe experiments

Explicitly time-dependent density operator including spatial degrees of freedom:

$$\dot{\rho} = \frac{i}{\hbar} [H, \rho] + L\rho$$
Based Liouville's equation
$$i\frac{d\rho_{kq}(\alpha, \beta)}{dt} = \sum_{\kappa'q'} \sum_{\gamma} \left\{ F_{\kappa q}^{\kappa'q'}(\alpha, \beta, \gamma, \frac{\text{pulses}}{\text{geometry}}; t) \rho_{k'q'}(\gamma, \beta) \quad \text{direct coupling}$$
Atomic (transition & ionization)
amplitudes from many-body
theory (RATIP)
S. Fritzsche, CPC 183 (2012) 1525
$$-i\Gamma_{\kappa q}^{\kappa'q'}(\alpha, \beta, \gamma; t) \rho_{k'q'}(\gamma, \beta) \right\} \quad \text{ionization & loss processes}$$

Collaboration with Alexei Grum-Grzhimailo

S.

III. Atomic interactions with twisted light and electrons

- waves with helical wave fronts and orbital angular momentum

Laguerre-Gaussian beams

- Bessel beams
- Vector beams

Superposition of Bessel beams

$\psi \sim e^{-i\omega t + ik_z z} e^{im\varphi} J_m(k_\perp r)$

Quantum numbers:

$$k_z$$
, k_{perp} , m, λ

Topological charge, winding number, projection of OAM, ...

Twisted photons

- beams with vortex lines and spiral phase fronts

C. Yao and M. Padgett, Adv. Optics & Photon. 3 (2011) 161.

Solutions of Maxwell's wave equations

- using especially Helmholtz' equation for the spatial part $\psi(\mathbf{r})$

$$\Box \psi(\mathbf{r}, t) = \left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial^2 t^2} \right) \psi(\mathbf{r}, t) = 0$$

$$\psi(\mathbf{r}, t) = \psi(\mathbf{r}) T(t) \qquad \text{Separation mit Konstante} - k^2$$

$$\left[\nabla^2 + k^2 \right) \psi(\mathbf{r}) = 0, \qquad \left(\frac{d^2}{dt^2} + \omega^2 \right) T(t) = 0, \qquad \omega = ck$$

Solutions of Maxwell's wave equations

- using especially Helmholtz' equation for the spatial part $\psi(\mathbf{r})$

$$\Box \psi(\mathbf{r}, t) = \left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial^2 t^2} \right) \psi(\mathbf{r}, t) = 0$$

$$\psi(\mathbf{r}, t) = \psi(\mathbf{r}) T(t) \qquad \text{Separation mit Konstante} - k^2$$

$$\left(\nabla^2 + k^2 \right) \psi(\mathbf{r}) = 0, \qquad \left(\frac{d^2}{dt^2} + \omega^2 \right) T(t) = 0, \qquad \omega = ck$$

For different coordinates & applications:

- (1) Plane waves (sinusoidal, spectral decomposition, cartesian)
- (2) Multipole expansions, spherical waves (spherical)
- (3) Hermite-Gaussian beams (TEM modes, ...)
- (4) Laguerre-Gaussian beams (paraxial, cylindrical)
- (5) Vector beams
- (6) Bessel beams

$$\mathbf{A}^{\mathrm{tw}}(\mathbf{r}) = \int a_{\varkappa m_{\gamma}}(\mathbf{k}_{\perp}) \, \mathbf{e}_{\mathbf{k}\Lambda} \, \mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} \frac{\mathrm{d}^{2}\mathbf{k}_{\perp}}{(2\pi)^{2}}$$

 \rightarrow and many more that can be realized experimentally today !!

Solutions of Maxwell's wave equations Twisted photons each have a well-defined (projection of orbital) angular momentum; OAM light.

- (1) Plane waves (sinusoidal, spectral decomposition, cartesian)
- (2) Multipole expansions, spherical waves (spherical)
- (3) Hermite-Gaussian beams (TEM modes, ...)
- (4) Laguerre-Gaussian beams (paraxial, cylindrical)
- (5) Vector beams
- (6) Bessel beams

$$\mathbf{A}^{\mathrm{tw}}(\mathbf{r}) = \int a_{\varkappa m_{\gamma}}(\mathbf{k}_{\perp}) \, \mathbf{e}_{\mathbf{k}\Lambda} \, \mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} \frac{\mathrm{d}^{2}\mathbf{k}_{\perp}}{(2\pi)^{2}}$$

and many more that can be realized experimentally today !!

Our recent focus: Bessel beams

- with well-defined AM, monochromatic and non-diffractive

Vector potential:

$$\psi \sim e^{-i\omega t + ik_z z} e^{im\varphi} J_m(k_\perp r)$$

Quantum numbers: k_z , k_{perp} , m_{γ} , λ

$$\mathbf{A}^{\mathrm{tw}}(\mathbf{r}) = \int a_{\varkappa m_{\gamma}}(\mathbf{k}_{\perp}) \, \mathbf{e}_{\mathbf{k}\Lambda} \, \mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} \frac{\mathrm{d}^{2}\mathbf{k}_{\perp}}{(2\pi)^{2}}$$

Fullfilles Helmholtz's equation.

Probabilities of individual OAM components:

Bessel beams vs. plane waves

- Representation in position, phase and momentum

Generation of twisted photons

- due to different experimental techniques

... as well as by several other methods, such as q-plates, spatial & cylindrical mode converters, axicons and also integrated circuits.

C. Yao and M. Padgett, Adv. Optics & Photon. 3 (2011) 161.

Photoabsorption and photoionization of light

- understanding basic light-matter interactions

- photochemistry
- x-ray source
- optically pumped lasers
- 🛥 solar cells
- photochromic complexes

Plane-wave light

Twisted light

How differs the photo-absorption and ionization for plane-wave & twisted radiation ?

Photoabsorption and photoionization of light

- understanding basic light-matter interactions

- photochemistry
- x-ray source
- optically pumped lasers
- 🛥 solar cells
- photochromic complexes

Plane-wave light

Twisted light

How differs the photo-absorption and ionization for plane-wave & twisted radiation ?

Photoionization of diatomic molecules

- the atomic version of Youngs' double-slit experiment

Scattering of light at the (two) atomic centers leads to interferences in the observed cross sections.

Fano's model:

$$\frac{d\sigma}{d\Omega_f} \sim \frac{1}{\omega^2} \cos^2(\boldsymbol{k}_f \cdot \boldsymbol{R}/2)$$

Photoionization of diatomic molecules

- the atomic version of Youngs' double-slit experiment

Scattering of light at the (two) atomic centers leads to interferences in the observed cross sections.

Fano's model:

How does the cross sections differ for twisted light ?

$$A(\mathbf{r}) = \int a_{\kappa m}(\mathbf{k}_{\perp}) \, u_{\mathbf{k}\lambda} \, e^{i\mathbf{k}\mathbf{r}} \, \frac{d^2 \mathbf{k}_{\perp}}{(2\pi)^2}$$
$$M_{if} = -\frac{i}{c} \int \Psi_f^{\dagger}(\mathbf{r}) \, \boldsymbol{\alpha} \, A(\mathbf{r}) \Psi_i(\mathbf{r}) d\mathbf{r}$$

Photoionization of diatomic molecules

No oscillations remains in the c.s. for large opening angles and at higher photon energies.

lonization of H_2^+ if aligned under an angle 45° w.r.t. the z-axis (quantization axis).

- ionization by twisted light

Intensity pofile for hv = 5 keV and 10 keV photons.

Internuclear distance R = 1.32 A

Recent research activities of the group

- i) Structure and properties of atoms & HCI
 - -- capture, excitation and ionization processes in strong static fields; accurate atomic calculations

PRA 93 (2016) 063413. PRC 93 (2016) 064318. NJP 18 (2016) 103034.

- ii) Auger cascades of light & medium elements
 - systematic treatment of shake-processes; multiple photo-detachment, electrons in plasma

PRE 93 (2016) 061201(R). PRA 94 (2016) 041401(R). iii) Photoionization and photon scattering

-- direct and sequential (multiple) ionization, Rayleigh scattering, polarization transfer

- vi) Interactions with twisted light & electrons
 - -- photo-excitation, ionization, Compton scattering, Mott scattering by Bessel & Laguerre Gaussian beams

EPL 115 (2016) 410010. PRA 94 (2016) 033420. PRA 94 (2016) 041402(R).

Kassel -- Darmstadt -- Heidelberg - Oulu - Jena

Summary: combination of quite different (many-particle) techniques

- Density matrix techniques and spherical tensors
- Racah's algebra
- Multiconfigurational expansions (CI, MCDF)
- Many-body perturbation theory (MBPT, CC)
- Green's functions