Radiation & Autoionization Processes

Atomic Theory and Computations

— Lecture script —

IAEA-ICTP School, Trieste, February 2017

Stephan Fritzsche

Helmholtz-Institut Jena &

Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Fröbelstieg 3, D-07743 Jena, Germany

Monday 27th February, 2017

1. Atomic theory and computations in a nut-shell

1.1. Atomic spectroscopy: Structure & collisions

Atomic processes & interactions:

- \succ Spontaneous emission/fluorescence: ... occurs without an ambient electromagnetic field; related also to absorption.
- \succ Stimulated emission: ... leads to photons with basically the same phase, frequency, polarization, and direction of propagation as the incident photons.
- \succ Photoionization: ... release of free electrons.
- ➤ Rayleigh and Compton scattering: ... Elastic and inelastic scattering of X-rays and gamma rays by atoms and molecules.
- ➤ Thomson scattering: ... elastic scattering of electromagnetic radiation by a free charged particle (electrons, muons, ions); low-energy limit of Compton scattering.
- \succ Multi-photon excitation, ionization and decay: ... non-linear electron-photon interaction.
- \succ Autoionization: ... nonradiative electron emission from (inner-shell) excited atoms.
- ➤ Electron-impact excitation & ionization: ... excited and ionized atoms; occurs frequently in astro-physical and laboratory plasmas.

- 1. Atomic theory and computations in a nut-shell
 - \succ Elastic & inelastic electron scattering: ... reveals electronic structure of atoms and ions; important for plasma physics.
 - ➤ Pair production: ... creation of particles and antiparticles from the internal of light with matter (electron-positron pairs).
 - ➤ Delbrück scattering: ... deflection of high-energy photons in the Coulomb field of atomic nuclei; a consequence of vacuum polarization.
 - ≻ ...
 - ➤ In practice, the distinction and discussion of different atomic and electron-photon interaction processes also depends on the particular community/spectroscopy.

1.2. Atomic theory

Covers a very wide range of many-body methods and techniques, from the simple shell model of the atom to various semi-empirical method to mean-field approaches ... and up to advanced ab-initio and quantum-field theories. The aim of ab-initio atomic structure and collision theory is to describe the (electronic) level structure, properties and dynamical behaviour on the basis of the (many-electron) Schrödinger equation or by even applying field-theoretical techniques.

Well, ... this is quite an ambitious task, and with a lot of surprises when it comes to details. Atomic theory is a great playground, indeed. Requires good physical intuition, or this is typically benefitial, at least.

Hierarchy of inner-atomic interactions

-- self-consistent fields vs. perturbation theory

Figure 1.1.: Atomic interactions that need to be considered for a quantitative description/prediction of atoms.

Theoretical models:

- ➤ Electronic structure of atoms and ions: is described quantum mechanically in terms of wave functions, energy levels, ground-state densities, etc., and is usually based on some atomic (many-electron) Hamiltonian.
- > Interaction of atoms with the radiation field: While the matter is treated quantum-mechanically, the radiation is more often than not (> 99 % of all case studies) described as a classical field.

Figure 1.2.: Characteristic time scales of atomic and molecular motions; taken from: *Controlling the Quantum World*, page 99.

- \succ This semi-classical treatment is suitable for a very large class of problems, sometimes by incorporating 'ad-hoc' quantum effects of the em field (for instance, spontaneous emission).
- \succ Full quantum treatment: of the radiation field is very rare in atomic and plasma physics and requires to use quantum-field theoretical techniques; for example, atomic quantum electrodynamics (QED).

1.3. Need of (accurate) atomic theory and data

- ➤ Astro physics: Analysis and interpretation of optical and x-ray spectra.
- ▶ Plasma physics: Diagnostics and dynamics of plasma; astro-physical, fusion or laboratory plasma.
- \succ EUV lithography: Development of UV/EUV light sources and lithographic techniques (13.5 nm).
- ➤ Atomic clocks: Design of new frequency standards; requires accurate data on hyperfine structures, atomic polarizibilities, light shift, blackbody radiation, etc.
- \succ Search for super-heavy elements: beyond fermium (Z = 104); 'island of stability'; better understanding of nuclear structures and stabilities. →
- ➤ Nuclear physics: Accurate hyperfine structures and isotope shifts to determine nuclear parameters; formation of the medium and heavy elements.
- \succ Surface & environmental physics: Attenuation, autoionization and light scattering.
- > X-ray science: Ion recombination and photon emission; multi-photon processes; development of x-ray lasers; high-harmonic generation (HHG).
- ➤ Fundamental physics: Study of parity-nonconserving interactions; electric-dipole moments of neutrons, electrons and atoms; 'new physics' that goes beyond the standard model.
- ➤ Quantum theory: 'complete' experiments; understanding the frame and boundaries of quantum mechanics ?
 ➤ ...

Basic assumption: Weak coupling of atoms with the radiation field, i.e. the field itself does not affect the electronic structure of the atoms and ions.

2.1. Radiative transitions

2.1.a. Einstein's A and B coefficients

Consider two levels of an atom: $\hbar\omega = E_2 - E_1 > 0.$

Spectral energy density:

$$\rho(\omega) \quad \dots \quad \text{energy density} / d\nu = \frac{\text{number of photons}}{\text{volume} \cdot d\nu}$$

Einstein's argumentation and coefficients:

➤ Einstein's rate equation:

$$\underbrace{-\frac{dN_2}{dt} = \frac{dN_1}{dt}}_{\text{particle conservation}} = A N_2 + B_{21} \rho(\omega) N_2 - B_{12} \rho(\omega) N_1 = P_{\text{emission}} N_2 - P_{\text{absorption}} N_1$$

> No field,
$$\rho(\omega) = 0$$
:
 $N_2(t) = N_2(0) e^{-At}$ $A = \frac{1}{\tau}$

 $A\ldots$ inverse lifetime, transition rate $[1/\mathrm{s}]$

 \succ Equilibrium state: $\frac{dN_2}{dt} = 0$:

$$\frac{P_{\text{absorption}}}{P_{\text{emission}}} = \frac{N_2}{N_1} = \frac{B_{12} \rho(\omega)}{A + B_{21} \rho(\omega)}$$

 \succ Atoms with more than two levels: We here assume additionally the principle of detailed balance

$$\frac{P_{ij}}{P_{ji}} = \frac{N_j}{N_i} = \frac{B_{ij} \rho(\omega_{ij})}{A_{ji} + B_{ji} \rho(\omega_{ij})}$$

In equilibrium, the emission and absorption probability is equal for each pair ij of atomic levels, and this equivalence is independent of any other possible transition processes that the atoms may undergo.

 \succ Generalized field-free case:

$$-\frac{dN_j}{dt} = \sum_i A_{ji} N_j \qquad \qquad \rightsquigarrow \qquad \qquad \tau_j = \left[\sum_i A_{ji}\right]^{-1}$$

 \succ Ratio A_{ji} : B_{ji} : B_{ij} : ... in thermal equilibrium

$$\frac{N_j}{N_i} = \frac{g_j}{g_i} \exp\left(-\frac{\hbar\omega_{ij}}{kT}\right); \qquad \rho(\omega_{ij}) = \frac{\omega_{ij}^2}{\pi^2 c^3} \frac{\hbar\omega_{ij}}{\exp\left(-\frac{\hbar\omega_{ij}}{kT}\right) - 1}$$

Planck's black-body radiation: Power density radiation law

- \succ Power density radiation law is a product of three quantities
 - state density: $g(\omega) = \frac{\omega^2}{\pi^2 c^3}$ [modes/m³/Hz];
 - photon energy: $\hbar\omega$ [Joule/photon; eV/photon];
 - mean occupation number of mode ω : $\langle n_{ij} \rangle = \left(e^{\frac{\hbar \omega_{ij}}{kT}} 1 \right)^{-1}$ [photons/mode].

- 2. Interactions of atoms in weak (light) fields
 - \succ Einstein's relation (1917): Relation of detailed balance is fulfilled for

$$A_{ji} = \frac{\omega_{ij}^2}{\pi^2 c^3} \hbar \omega_{ij} B_{ji} = \frac{\omega_{ij}^2}{\pi^2 c^3} \hbar \omega_{ij} \frac{g_i}{g_j} B_{ij}$$

Einstein's coefficients depend on the internal structure of the atoms and they are (assumed to be) independent of the radiation field and its spectral density.

> Apparently, spontaneous emission increases rapidly with the frequency of the modes, $\propto \omega_{ij}^3$.

Example (Line-width contributions for the orange sodium line): This 'orange line' (known from sodium vapor lamps, for instance) has the frequency $\omega_o \sim 2\pi \cdot 4 \cdot 10^{14}$ Hz, a lifetime $\tau \sim 10^{-8}$ s and a natural width $\Delta \omega_o \sim 10^8$ Hz = 0.1 GHz — This gives a relative contribution $\Delta \omega_o / \omega_o \sim 4 \cdot 10^{-8}$.

For sodium with mass number A = 23 and for a temperature T = 500 K, we find a Doppler width $\Delta \omega/\omega \sim 3 \cdot 10^{-6}$ or $\Delta \omega \approx 12$ GHz.

In general: Doppler widths \gg natural widts.

2.1.b. Transition amplitudes and probabilities

radiation field	atom – field interaction	atomic structure
(time - dependent)	\iff	and motion

Time-dependent perturbation theory:

• semi-classical:	quantized atom \oplus classical em field.	
• QED:	quantized atom \oplus quantized em field	(Dirac 1927).

Limitations of the semi-classical description:

- \succ Spontaneous emission is dominant for atoms in weak fields but can be understood only ad-hoc via the Einstein relation; this semi-classical picture is inappropriate for real weak fields, i.e. classical fields ... but this picture can be saved by applying these relations.
- \succ Way out: Use the semi-classical picture to describe the induced emission/absorption.
- ➤ In classical light fields, the relative importance of the spontaneous emission is reduced (when compared to the action of the driving field), although it is generally not negligible.

Hamiltonian function of a particle in an electro-magnetic field: ... with (ϕ, \mathbf{A}) the 4-vector potential

$$H = \frac{1}{2m} (\mathbf{p} + e\mathbf{A})^2 - e\phi + V, \qquad \mathbf{E} = -\nabla\phi - \frac{\partial\mathbf{A}}{\partial t}, \qquad \mathbf{B} = \operatorname{rot}\mathbf{A}$$
$$= \frac{\mathbf{p}^2}{2m} + V(\mathbf{r}) + \frac{e}{2m} (\mathbf{p} \cdot \mathbf{A} + \mathbf{A} \cdot \mathbf{p}) + \frac{e^2}{2m} \mathbf{A}^2 - e\phi = H_{\operatorname{atom}} + H_{\operatorname{atom-field interaction}} = H_o + H'$$

Special case: Superposition of plane waves

$$\phi = 0$$

$$\mathbf{A} = \mathbf{A}_{-} e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} + \mathbf{A}_{+} e^{i(\mathbf{k}\cdot\mathbf{r}+\omega t)}, \qquad \text{div } \mathbf{A} = 0 \quad \text{Coulomb gauge;} \quad [\mathbf{p}, \mathbf{A}] = 0$$

$$H' = \frac{e}{m} \mathbf{A} \cdot \mathbf{p} + \underbrace{\frac{e^{2}}{2m} \mathbf{A}^{2}}_{\text{neglegible for weak fields}}$$

$$H_{o} \oplus \text{ time-dependent perturbation} \qquad \blacktriangleright \qquad \text{time-dependent perturbation theory.}$$

Absorption probability:

 \succ Fermi's Golden rule gives rise to

$$P_{\text{absorption}} = B_{ij} \rho(\omega_{ij}) = \frac{\pi}{\epsilon_o \hbar^2 \omega_{ij}^2} \left| \left\langle j \left| \frac{e}{m} \boldsymbol{\epsilon} \cdot \mathbf{p} \, e^{i \, \mathbf{k} \cdot \mathbf{r}} \right| i \right\rangle \right|^2 \rho(\omega_{ij}) \qquad \Longrightarrow \qquad A_{ji} \propto \omega_{ij} \frac{g_i}{g_j} B_{ij}$$

where ϵ is the polarization vector of the emitted/absorbed light and $\mathbf{k} \equiv \mathbf{k}_{ij}$ the corresponding wave vector.

- \succ Non-degenerate case: $B_{ij} = B_{ji}$ (microscopic reversible)
- \succ Many-electron atoms:

$$\mathbf{p} e^{i \mathbf{k} \cdot \mathbf{r}} \longrightarrow \sum_{a} \mathbf{p}_{a} e^{i \mathbf{k}_{a} \cdot \mathbf{r}_{a}}$$

> Merely the matrix element $\langle j | \boldsymbol{\epsilon} \cdot \mathbf{p} e^{i \mathbf{k} \cdot \mathbf{r}} | i \rangle$ depends on the electron coordinates; its mathematical analysis gives rise to the (so-called) selection rules.

2.2. Electric-dipole interactions and higher multipoles

2.2.a. Electric-dipole approximation

Consider a light field with plane-wave structure $\sim e^{i\mathbf{k}\cdot\mathbf{r}}$ and $|\mathbf{k}| = \frac{2\pi}{\lambda}$; for instance, \blacktriangleright visible light: $\lambda \approx 500$ nm ... 1000-10000 atomic radii

 $e^{i\mathbf{k}\cdot\mathbf{r}} = 1 + i\mathbf{k}\cdot\mathbf{r} + \dots \approx 1$

Dipole approximation: light wave is constant over the size of the atom.

Evaluation of the Einstein A coefficients:

> Consider polarization $\boldsymbol{\epsilon} \mid \mid \mathbf{e}_x$, then $\langle j \mid \boldsymbol{\epsilon} \cdot \mathbf{p} e^{i \mathbf{k} \cdot \mathbf{r}} \mid i \rangle$

$$j |p_{x}|i\rangle = \langle j |m \dot{x}|i\rangle = \frac{im}{\hbar} \langle j | [H_{o}, x] | i\rangle \implies \langle j | \frac{e}{m} p_{x} | i\rangle = \frac{i}{\hbar} (E_{j} - E_{i}) \langle j | e x | i\rangle$$
$$B_{ij} = \frac{\pi}{\epsilon_{o} \hbar^{2}} |\langle j | e x | i\rangle|^{2} \qquad (\text{x-polarization}); \qquad B_{ij} = \frac{1}{3} \cdot \frac{\pi}{\epsilon_{o} \hbar^{2}} |\langle j | e \mathbf{r} | i\rangle|^{2} \qquad (\text{unpolarized})$$

dipole operator in length gauge $e \mathbf{r}$.

 \succ Spontaneous decay for non-degenerate and degenerate levels:

$$A_{ji} = \frac{1}{3} \frac{\omega_{ij}^3}{\pi c^3 \epsilon_o \hbar} |\langle j | e\mathbf{r} | i \rangle|^2 \qquad \dots \text{non-degenerate} | j \rangle$$
$$A_{ji} = \frac{1}{3} \frac{\omega_{ij}^3}{\pi c^3 \epsilon_o \hbar} \sum_{m_i} |\langle jm_j | e\mathbf{r} | im_i \rangle|^2 \neq f(m_j) \qquad \dots \text{degenerate} | jm \rangle$$

 m_i ... additional quantum number to account all degenerate levels.

Especially, optical transitions: $A \sim 10^8/s \quad \text{or} \quad \tau = \frac{1}{A} = 10^{-8} s \quad \dots \text{ spontaneous decay dominates}$ $A \sim \omega^3 \quad \dots \text{ Radio frequencies;} \quad \text{spontaneous decay negligible. \%}$ $\Rightarrow \text{ Scaling with nuclear charge:} \quad A_{if}^{(E1)} \propto Z^3$

2.2.b. Selection rules and discussion

Intensity of lines \sim (i) occpuation of levels; (ii) transition probability.

Selection rules for bound-bound transitions:

- \succ Matrix elements between bound states: $\langle jm_j | e \mathbf{r} | im_i \rangle$
- \succ Expectation value of the electric-dipole moment $\langle e\mathbf{r} \rangle$ for stationary states:

$$\langle e\mathbf{r} \rangle = e \int d^3 r \; \psi_{n\ell m}^* \, \mathbf{r} \; \psi_{n\ell m} = {}_{\mathbf{r} \to -\mathbf{r}} e \; (-1)^{2\ell+1} \int d^3 r \; \psi_{n\ell,m}^* \, \mathbf{r} \; \psi_{n\ell m} \; .$$

- \succ Electric-dipole transitions can connect only states with different parity:
 - $\bullet \ \text{even} \quad \longleftrightarrow \quad \text{odd}$
 - $\Delta \ell = \pm 1 \text{ (odd)}$
- \succ The electric-dipole operator is an (odd-partiy) rank-1 operator.
- \succ General form of the intensity for electric-dipole radiation:

$$I \sim N_j \omega^4 \left[\int dr \, r^2 \, R_{nl}^* \, r \, R_{n'l'} \right]^2 \, F \left(\ell m_\ell, \, \ell' m_\ell' \right).$$

- (i) Calculation of intensities \rightsquigarrow evaluation of radial integrals.
- (ii) Angular part of the intensity that can be obtained analytically within the central-field approximation.

 \succ Further selection rules for an additional weak magnetic field **B**:

- $\boldsymbol{\epsilon} \parallel \mathbf{n}_{\mathrm{B}}$ $\Delta m_{\ell} = 0$... π -polarization
- $\boldsymbol{\epsilon} \perp \mathbf{n}_{\mathrm{B}}$ $\Delta m_{\ell} = \pm 1 \dots \sigma$ -polarization.

2.2.c. Higher multipole components ("forbidden transition")

$$e^{i\,\mathbf{k}\cdot\mathbf{r}} = 1 + i\,\mathbf{k}\cdot\mathbf{r} + \dots$$

magnetic-dipole (M1) and electric-quadrupole (E2) radiation

(M1)
$$\sim \frac{\omega^2}{c^2} \left| \left\langle j \left| \frac{e\hbar}{2m} \mathbf{l}_q \right| i \right\rangle \right|^2 = \frac{\omega^2}{c^2} \left| \left\langle j \left| \boldsymbol{\mu}_{l_q} \right| i \right\rangle \right|^2$$
, $\boldsymbol{\mu} = \frac{e\hbar}{2m} \mathbf{l} = \mu_{\rm B} \mathbf{l}$... magnetic moment of electron
(E2) $\sim \frac{\omega^4}{c^2} \left| \left\langle j \left| e x_q x_r \right| i \right\rangle \right|^2$

 $x_q x_r$... second-order tensor (components).

Intensity ratio for hydrogen-like wave functions:

E1 : M1 : E2 = 1 :
$$\alpha^2$$
 : α^2

2.2.d. Dipole transitions in many-electron atoms

For a weak radiation field, the interaction of the radiation field with the (electrons of an) atom can be described perturbatively by the Hamiltonian

$$H' = \frac{e}{m} \mathbf{A} \cdot \sum_{k} \mathbf{p}_{k}$$
 $\mathbf{A} = \text{constant}$... over extent of atom

and where the spontenous emission rates are obtained from the induced rates via the Einstein relation above. In this very common semi-classical approach, the spontanoeus emission rates is

$$A_{ji} = \frac{32 \pi^3 e^2 a_o^2}{3h} (E_j - E_i)^3 \sum_q \left| \left\langle \gamma_j J_j M_j \left| P_q^{(1)} \right| \gamma_i J_i M_i \right\rangle \right|^2$$
$$P_q^{(1)} = \sum_{i=1}^N r_q^{(1)}(i) = \sum_{i=1}^N r_i \sqrt{\frac{4\pi}{3}} Y_{1q}(\vartheta_i, \varphi_i)$$

spherical components of the (many-electron) dipole operator

Analogue formulas also apply for the multipole radiation of higher order.

transition	selection rules	Electron is free
		Electron is bound to ion
Electric dipole (E1)	$ j_a - j_b = 0, \pm 1$	30 3d
	$\pi_a = -\pi_b$	3s _{1/2} 3p _{1/2} 3u _{3/2}
Magnetic	$ \boldsymbol{j}_a - \boldsymbol{j}_b = 0, \pm 1$	M1 + E2
	$\pi_a = \pi_b$	$F_{1+M2} = F_{1+M2} = F_{1+M2}$
Electric	$ j_a - j_b = 0, \pm 1, \pm 2$	
quadrupole (L2)	$\pi_a = \pi_b$	M1
Magnetic	$ j_a - j_b = 0, \pm 1, \pm 2$	
quadrupole (M2)	$\pi_a = -\pi_b$	

Figure 2.2.: Left: Selection rules for higher multipole transitions, and where $\pi_{a,b}$ refer to the parities of the initial and final states. Although the notation refers here for one-electron atoms, the same rules also apply for many-electron atoms and ions. Right: Selective multipole transitions are shown for hydrogen-like ions.

2.2.e. Multipol expansions of the radiation field

Multipoles radiation

- > Non-relativistic time-dependent perturbation for weak fields: $H' = e \mathbf{p} \cdot \mathbf{A}$.
- > Relativistic time-dependent perturbation: $H' = ce \alpha \cdot \mathbf{A}$.

Figure 2.3.: Decay rates and scaling of the high multipole transitions with the nuclear charge, Z, for hydrogen-like ions.

 \succ Electron-photon operator: gives rise (for instance, in time-dependent perturbation theory) to the transition amplitude

$$M_{fi} = \int d^3r \; \psi_f^* \; \boldsymbol{lpha} \cdot \boldsymbol{\epsilon} \; e^{i \mathbf{k} \cdot \mathbf{r}} \; \psi_i \; .$$

 \succ Selection rules:

 $|J_a - J_b| \leq L \leq J_a + J_b \qquad \delta(J_a, L, J_b), \qquad \begin{cases} \pi = (-1)^L & \text{electric multipoles} \\ \pi = (-1)^{L+1} & \text{magnetic multipoles} \end{cases}$

 \succ For low-Z, all high(er) multipole transition are negligible compared to the leading electric dipole (E1) term.

 \succ For heavy and superheavy elements, the high multipoles become rapidly important with nuclear charge Z.

Figure 2.4.: Left: Characteristic x-rays are emitted from heavy elements when their electrons make transitions between atomic energy levels. Right: The characteristic $K_{\alpha,\beta}$ x-ray emission appears as two sharp peaks in the photon spectra following the production of a vacancy in the K-shell (n = 1). The background in the emitted x-ray spectra arises from Compton and bremsstrahlung radiation. From en.wikipedia.org/wiki and

2.3. Photo excitation and photo emission processes

2.3.a. Photo excitation and fluorescence

- > Notation: $\hbar\omega + A \longrightarrow A^* \longrightarrow A^{*'} + \hbar\omega'$.
- \succ Photoexcitation is often discussed together with photoionization or even photofragmentation (for molecules).
- \succ Fluorescence: spontaneous photon emission that results in some lower-lying level of the atoms or ions.

Photoabsorption and emission of σ - vs. π -light

- \succ Left- and right-circular light are often called also σ^{\pm} light, in contrast to the linear-polarized π -light.
- ► If the atom is aligned along the z-axis (quantization axis), the π -light is emitted in the x y plane, oscillates predominantly along the z-axis and combines substates with $\Delta m = 0$.
- \succ Angular distributions:
 - σ^{\pm} : $W(\vartheta) \propto (1 + \cos^2 \vartheta)$
 - π : $W(\vartheta) \propto \sin^2 \vartheta$

Siegbahn	IUPAC	Siegbahn	IUPAC	Siegbahn	IUPAC	Siegbahn	IUPAC
και	K-L3	Lal	L3-M5	Ln	L2-N4	$M\alpha_1$	M5-N7
Ka2	K-L ₂	La2	L3-M4	Ly2	L1-N2	Maz	M5-N6
Kβ1	K-M3	$L\beta_1$	L2-M4	LYS	L1-N3	мβ	M4-N6
$K^{I}\beta_{2}$	K-N ₃	LB2	L3-N5	Ly4	L1-O3	Μγ	M3-N5
$K^{II}\beta_2$	K-N ₂	L _{\$3}	L1-M3	L74	L1-02	мζ	M4.5-N2.3
Κ β ₃	K-M ₂	LB4	L1-M2	Lys	L2-N1		
$K^{I}\beta_{4}$	K-N5	L _{\$5}	L3-04.5	L ₇₆	L2-04		
$K^{II}\beta_4$	K-N4	LB6	L3-N1	L78	L2-01		
Kβ _{4x}	K-N4	LB7	L3-01	Lys	L2-N6(7)		
K ^I β ₅	K-M5	LB7	L3-N6.7	Lη	L2-M1		
$K^{II}\beta_5$	K-M4	LB9	L1-M5	LI	L3-M1		
		L\$10	L1-M4	Ls	L3-M3		
		L\$15	L3-N4	Lt	L3-M2		
		L\$17	L2-M3	Lu	L3-N6.7		
				Lv	L2-N6(7)		

Figure 2.5.: While the x-ray (analytical) community still largely uses the so-called Siegbahn notation, the IUPAC notation is consistent with the notation used for Auger electron spectroscopy, though the latter one is slightly more cumbersome. From nau.edu/cefns/labs.

•

2.3.b. Characteristic x-ray radiation

- > X-ray transitions: $K_{\alpha 1}(2p_{3/2} \rightarrow 1s); \quad K_{\alpha 2}(2p_{1/2} \rightarrow 1s); \quad K_{\beta 1}(3p_{3/2} \rightarrow 1s), \dots$
- \succ X-ray fluorescence following electron impact:

 $e^- + A \longrightarrow e^- + A^* \longrightarrow e^- + A^+ + \hbar\omega; \qquad \hbar\omega = E_i - E_f.$

➤ Mosley's law: The energies of the characteristic radiation and of the absorption edges follow (very) approximately Balmer's rule: ... with $Z_{\text{eff}} = Z - S$, and with the screening number S.

$$\hbar\omega = Z_{\mathrm{eff}}^2 \left(rac{1}{n_f^2} - rac{1}{n_i^2}
ight)$$

> X-ray satellite and hypersatellite lines: $K_{\alpha 1}^s \left((1s2p)^{-2} \rightarrow (2p_{3/2}2p)^{-2} \right), \quad K_{\alpha 1}^h \left((1s)^{-2} \rightarrow (1s2p_{3/2})^{-2} \right), \quad \dots$

2.3.c. Characteristic x-ray absorption

► Beer's law: $\frac{dN}{N} = -\sigma_a n \, dx$ with number density n; ... n – number of atoms per cm³ of the material (atomic density).

$$N(x) = N(0) \exp(-x/\xi);$$
 $\xi = \frac{1}{\sigma_a n}$... mean free path length.

➤ X-ray Absorption Spectroscopy: measurement of the x-ray absorption coefficient of a material as a function of energy (EXAFS and XANES).

Figure 2.6.: Left: Edges in the x-ray absorption coefficients as function of the photon energy. Right: Principle of X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy. From chemwiki.ucdavis.edu and pubs.rsc.org

- ➤ Note that the 'edges' are often displayed as function of the wavelength ... which virtually leads to a 'mirror' image of the figure.
- \succ Usually, the photoelectric effect is largest at low energies, Compton scattering dominates at intermediate energies, and pair production dominates at high energies.

2.3.d. Rayleigh and Compton scattering

Figure 2.7.: The total (x-ray) absorption coefficient as function of the photon energy, and up to very high γ energies. The figure displays the relative importance of the three major effects, the photoionization, Compton and pair-creation process. Above 5 MeV, pair production starts to dominate the photoabsorption of matter.

- \succ Rayleigh: $\hbar\omega + A \longrightarrow A + \hbar\omega$... elastic scattering of high-energetic photons
- ≻ Compton: $\hbar\omega + A \longrightarrow A^* + \hbar\omega'$... inelastic scattering of high-energetic photons with a simultaneous atomic excitation/de-excigtation

Figure 2.8.: Comparison of different ionization and subsequent decay processes in atoms.

2.3.e. Bremsstrahlung

 $\geq e^{-}(E_e) + A \longrightarrow e^{-}(E'_e) + A + \hbar\omega, \quad \hbar\omega = E_e - E'_e \quad \dots \text{ energy conservation.}$ \geq Maximal loss of kinetic energy of the electron, $E_{\text{max}} = eU$ leads to a minimum wave lengths

$$\lambda_{\min} = \frac{hc}{E_{\max}} = \frac{hc}{eU}; \qquad \lambda[nm] = \frac{1240}{E[eV]}.$$

Figure 2.9.: First ionization potential as function of the nuclear charge of elements. From: www1.aps.anl.gov.

► Examples: $U = 10 \text{ kV} \quad \rightsquigarrow \lambda \sim 1 \text{ Å}; \quad U = 100 \text{ kV} \quad \rightsquigarrow \lambda \sim 0.1 \text{ Å}.$

 \succ Continuation of the radiative recombination (RR) process if the 'capture' occurs into the continuum of the ions.

Figure 2.10.: Schematic diagram for the XPS emission process (left). An incoming photon causes the ejection of a photoelectron. The subsequent relaxation process (right) leads to the emission of an Auger KLL electron; from http://www.vub.ac.be/

2.3.f. Radiative electron capture (REC)

➤ Capture of a (quasi-) free electron by an ion under the releases of a photon; important for multiply and highly-charged ions.

$$e^{-}(E_e) + A^{q+} \longrightarrow A^{(q-1)+*}(E_n) + \hbar\omega \longrightarrow A^{(q-1)+}(E_f) + \hbar\omega + \underbrace{\hbar\omega'}_{\text{characteristic radiation}}$$

> In multiply and highly-charged ions, the REC or radiative recombination (RR) are non-resonant process, while the

dielectronic recombination (DR) is a resonant process:

$$e^{-} + A^{q+} \longrightarrow A^{(q-1)+} + \hbar\omega \qquad \dots \text{ RR or REC}$$
$$e^{-} + A^{q+} \longrightarrow A^{(q-1)+*} \longrightarrow A^{(q-1)+} + \hbar\omega \qquad \dots \text{ DR.}$$

 \succ In laser physics, RR is known as a process that destroyes the carriers, i.e. the electrons and holes.

2.3.g. Two-photon absorption (TPA) and two-photon emission

 \succ Simultaneous absorption or emission of two photons:

 $\hbar\omega + \hbar\omega' + A \longrightarrow A^* \longrightarrow A + \hbar\omega + \hbar\omega'$

> Atomic transition rate depends quadratically on the light intensity: $A_{\text{absorption}} \sim I^2$.

 \succ Different selection rules for TPA than for one-photon absorption.

 \succ Examples:

- Helium-like ions: $1s2s \ {}^{1}S_{0} \rightarrow 1s^{2} \ {}^{1}S_{0}$ decay by E1E1 + M1M1 + E2E2 + ... emission; the E1E1 channel clearly dominates by several orders of magnitude.
- Beryllium-like ions: $1s^22s2p \ ^3P_0 \rightarrow 1s^22s^2 \ ^1S_0$ decay by E1M1 + E2M2 + 3E1 + ... emission; the $\ ^3P_0$ level is the lowest excited level and has extreme long lifetimes up to many thousands of years near to the neutral end of the sequence.
- \succ Scaling with nuclear charge: $A_{if} \propto Z^{-6}$

2.4. Atomic photoionization

Photoionization with subsequent Auger electron emission (autoionization):

$$\hbar\omega + A(E_i) \longrightarrow A^{+*}(E_n) + e_p(E_p) \longrightarrow A^{++*}(E_f) + \underbrace{e_p(E_p) + e_a(E_a)}_{\text{post-collision interaction}}$$

Figure 2.11.: Cross sections for the photoionization of neutral W (tungsten) atoms. The upper panel shows the result of relativistic Hartree-Fock (RHF) calculations for the photoabsorption by neutral tungsten. The tungsten atoms are brought into the gas phase by evaporating tungsten at 3200 K. From www.mdpi.com.

2.4.a. Photoionization amplitudes and transition amplitudes

- > Photoionization from the ground state of an atom or ion is possible for $\hbar \omega > I_p$ (1st ionization potential).
- \succ For a weak photon field, this ionization is again caused by the Hamiltonian

$$H' = \frac{e}{m} \mathbf{A} \cdot \sum_{i} \mathbf{p}_{i} =_{(\text{in E1 approximation})} \mathbf{E} \cdot \sum_{i} \mathbf{r}_{i}$$

with $\mathbf{E} = \Re \left[F_o e^{-i\omega t} \mathbf{n} \right]$, and where F_o denotes the magnitude of the electric field.

≻ Cross section for the photoionization of an atom for a transition from $|i\rangle \rightarrow |f\rangle$: ... $P(\omega)$ is the ionization probability per atom and time unit

$$\sigma(\omega) = \frac{P(\omega)}{F}$$

> Photon flux F: is the number of photons per unit area and unit time

$$F = \frac{|F_o|^2 c}{8\pi \omega}$$

> Transition probability: ... k_f – asymptotic momentum of the free electron.

$$P_{if}(\omega, k_f) = 2\pi \left| \left\langle f \left| \frac{F_o}{2} \mathbf{r} \cdot \mathbf{n} \right| i \right\rangle \right|^2, \rho_f(E_f)$$

 \succ Density of states:

$$\rho(E_f) = \rho_o \,\delta\left(\hbar\omega + E_i - E_f\right) = \rho_o \,\delta\left(\hbar\omega + I_f - \frac{k_f^2}{2}\right)$$

- 2. Interactions of atoms in weak (light) fields
 - \succ Total transition probability:

$$P_{if}(\omega) = \sum_{k_f} P_{if}(\omega, k_f)$$

 \succ Free (outgoing) electron: is often approximated by Coulomb waves

$$\lim_{r \to \infty} R_{k\ell}(r) \sim \frac{1}{r} \cos\left(kr + \frac{q}{k}\ln(2kr) - \frac{(\ell+1)\pi}{2} + \delta_{\ell}^{\text{Coulomb}} + \delta_{\ell}\right)$$

 $\delta_{\ell}^{\text{Coulomb}}$... Coulomb phase shift

 δ_{ℓ} ... non – Coulomb phase shift

q ... (screened) charge that is seen asymptotically by the electron

> Summation over k_f : ... $\frac{2}{\pi}$ – normalization factor of free electrons in the momentum scale.

$$\sum_{k_f} \rightarrow \frac{2}{\pi} \int dk_f \qquad \Longrightarrow \ P_{if}(\omega) \sum_{k_f} = \frac{2}{\pi} \int dk_f \ P_{if}(\omega, k_f)$$

2.4.b. Shake-up and shake-off processes; direct double photoionization

 \succ Photoionization with excitation and direct double photoionization:

$$\begin{array}{rcl} \hbar\omega\,+\,A&\longrightarrow\,A^{+*}\,+\,e_p^-&\longrightarrow\,A^{++}\,+\,e_p^-\,+\,e_A^-\\ &\longrightarrow\,A^{++}\,+\,2\,e_p^-\\ &\longrightarrow\,A^*&\longrightarrow\,A^{++}\,+\,2\,e_A^-\\ &\longrightarrow\,A^*&\longrightarrow\,A^{+*}\,+\,e_A^-&\longrightarrow\,A^{++}\,+\,2\,e_A^- \end{array}$$

ionization – excitation with subs. Auger direct double ionization excitation with Auger with shake – off excitation with two – step Auger cascade

 \succ Transition amplitude:

$$\langle ((\gamma_f J_f, \epsilon_1 \kappa_1) X_f, \epsilon_2 \kappa_2) J'M' \mid Z_{\rm op} \mid \gamma_i J_i M_i \rangle$$

Figure 2.12.: Left: Different elastic and inelastic electron scattering processes on atoms, including bremsstrahlung. Right: Bremsstrahlung is characterized by a continuous distribution of radiation that is shifted towards higher photon energies and becomes more intense with increasing electron energy. From: www.nde-ed.org/EducationResources and hyperphysics.phy-astr.gsu.edu.

2.5. Non-radiative transitions: Auger transitions and autoionization

```
\succ Single- or two-step Auger decay:
```

 $A^{q+} \longrightarrow A^{(q+1)+} + e^{-}_{A} \longrightarrow A^{(q+2)+} + e^{-}_{A,1} + e^{-}_{A,2}$

Figure 2.13.: Information that is available from Auger electron spectroscopy. From www.lpdlabservices.co.uk

 \succ Examples:

$K - LL, K - LM, L - MM, L_3 - M_1 M_{23}, \dots$	normal Auger transitions
$L - LM, M - MN, \dots$	Coster – Kronig transitions
$L - LL, L_1 - L_2L, MMM, \dots$	super.Coster – Kronig transitions

▶ For an autoionization, the excited atom $A^{q+,*}$ must lay energetically in the continuum of the next higher charge state.

Figure 2.14.: Left: Comparison of Auger yield and fluorescence yield as a function of atomic number. Right: Auger characteristic energies. From and commons.wikimedia.org and www.semitracks.com.

- \succ Auger transitions and autoionization are caused by inter-electronic interactions.
- > Kinetic energy of emitted electrons: $E_{kin} = E_i(N) E_f(N-1)$.
- Autoionization: (Low-energy) emission of valence electrons.
 Auger decay: (High-energetic) electron emission after decay of an inner-shell hole.
- Autoionization and Auger decay are very similar in their theoretical treatment; they are both described by the Auger (autoionization) rate

$$A_{fi} \sim 2\pi \left| \left\langle (\gamma_f J_f, \epsilon_f \kappa_f) J' M' \right| \sum_{i < j} \left| \frac{1}{r_{ij}} \right| \gamma_i J_i M_i \right\rangle \right|^2$$

 \succ Selection rules for Auger transitions:

$$\Delta J = |J_i - J_f| = \Delta M = |M_i - M_f| = 0 \qquad (\text{strict, since caused by inner interactions})$$

$$\Delta L = \Delta M_L = \Delta S = \Delta M_S = 0 \qquad (\text{in the non - relativistic framework})$$

However, no simple rules apply for J_i, J_f or M_i, M_f , since the access angular momentum is carried away by the outgoing electron.

- > Scaling with nuclear charge Z: $A_{fi} \propto Z^0 = \text{const.}$
- \succ Auger electron spectroscopy (AES): common analytical technique for studying surfaces and materials.
- \succ Excitation and subsequent decay of a neutral atom:

$$\hbar\omega + A \rightarrow A^{+*}(E_i) + e_p(E_p) \rightarrow A^{++*}(E_f) + \underbrace{e_p(E_p) + e_a(E_a)}_{\text{post-collision interaction}}$$

 \succ Auger vs. fluorescence yield:

$$\omega = \frac{\Gamma_x}{\Gamma_x + \Gamma_A} = \frac{\Gamma_x}{\sum_i \Gamma_i} \propto \frac{Z^4}{Z^4 + Z^0} \to 1 \qquad \text{for } Z > 50.$$

> Shake-up and shake-off processes: Excitation and (auto-) ionization due to a sudden change in the potential; often estimated in terms of probabilities due to the overlap of wave functions that are obtaine for a N-electron atom:

$$P_{\text{shake}} = 1 - \int d^3 r \, \psi_f^*(N-1) \, \psi_i(N)$$
$$P_{\text{orbital}} = \int d^3 r \, \psi_f^*(N-1) \, \psi_i(N) \qquad \dots \text{ probability to stay in given orbital.}$$

2.6. Beyond single-photon or single-electron transitions

Weak processes with several photons and/or electrons:

 \succ E1E1 (or 2E1) decay of excited states:

 $A^* \longrightarrow A + \hbar\omega_1 + \hbar\omega_2, \qquad \Delta E = \hbar\omega_1 + \hbar\omega_2 = E(A^*) - E(A).$

Example: He-like $1s2s \ {}^{1}S_{0} \rightarrow 1s^{2} \ {}^{1}S_{0}$ can only decay by 2E1 and, hence, the $1s2s \ {}^{1}S_{0}$ level in neutral helium is metastable with a lifetime of about 19 ms.

Hyperfine quenching:

- ► Radiative Auger decay: $A^{+*} \longrightarrow A^{++} + \hbar \omega + e_A^-$
- \succ Two-photon double ionization: $2\hbar\omega + A^{+*} \longrightarrow A^{++} + e_{p,1}^{-}(E_1) + e_{p,2}^{-}(E_2)$
- \succ Two-color single ionization: $\hbar\omega_1 + \hbar\omega_2 + A \longrightarrow A^+ + e_p^-$
- > Two-color double ionization: $\hbar\omega_1 + \hbar\omega_2 + A \longrightarrow A^{++} + e_{p,1}^-(E_1) + e_{p,2}^-(E_2)$
- > Multi-photon ionization: $n \cdot \hbar \omega + A \rightarrow A^+ + e_p^-$
- \succ Quantum mechanics allows many more but often (very) weak transitions.
- \succ Conservation of energy typically leads to a unique condition(s) for the (sum of) energies of the emitted particles.