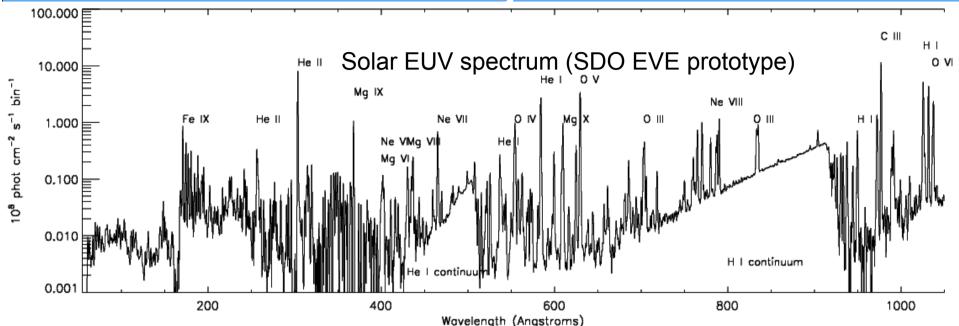
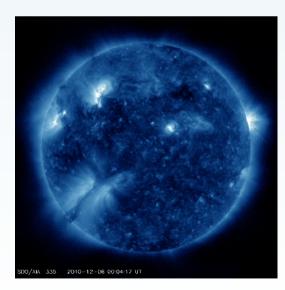
CHIANTI database and programs

Giulio Del Zanna

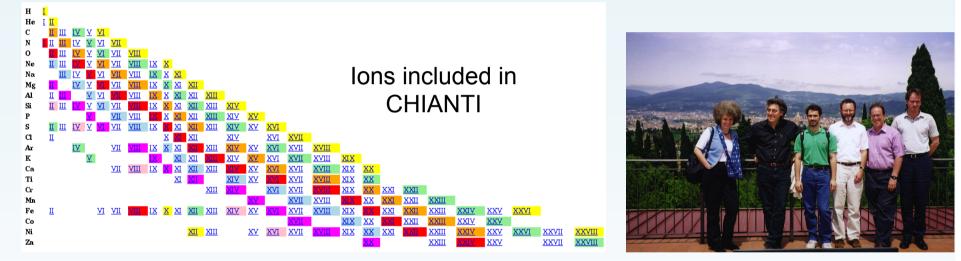
gd232@cam.ac.uk


DAMTP, University of Cambridge





The XUV is dominated by continuum and lines


In most astrophysical plasma, lines are optically thin.

Del Zanna - IAEA-ICTP school - Mar 2017

CHIANTI atomic package

CHIANTI provides all atomic data and IDL programs to model spectra from collisionallyionised optically-thin plasmas. Over 3000 citations. Used widely.

> Data, programs and user guides: <u>www.chiantidatabase.org</u> CHIANTI Google user group Active members: Dere, Young, Landi, Mason

Basic atomic data are included in many other databases and spectral codes. (VAMDC: see http://portal.vamdc.org/, XSTAR, CLOUDY, MOCASSIN, ATOMDB, XSPEC, ISIS, PINTofALE).

The assessment of the atomic data is published in a paper every about two years.

Del Zanna - IAEA-ICTP school - Mar 2017

Spectral line intensities

In optically-thin plasmas line intensities are proportional to:

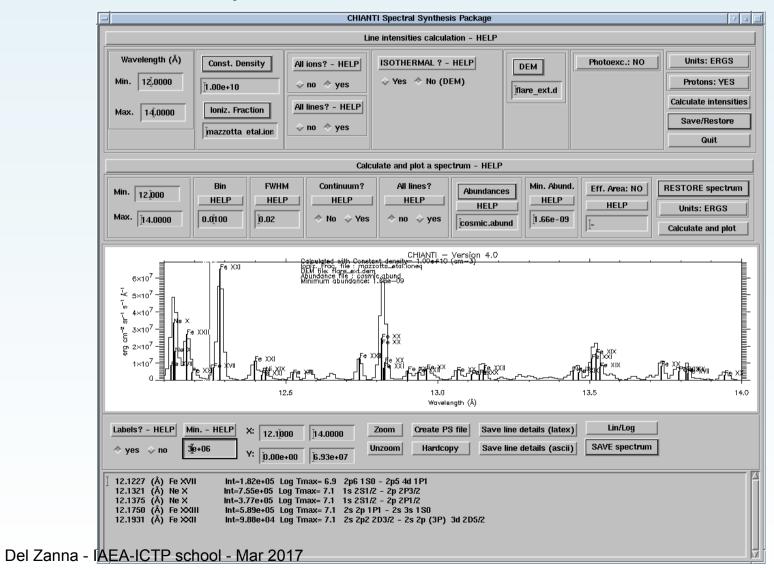
$$I \sim n_j A_{ji} = \frac{N_j(X^{+m})}{N(X^{+m})} A_{ji} \frac{N(X^{+m})}{N(X)} \frac{N(X)}{N(H)} \frac{N(H)}{N_e} N_e$$

A-valueLevel populationIonElemental
abundances(Ne,Te)abundancesabundanceTaking into account
all populating and
de-populating
processesCalculated
in ionization
equilibrium.

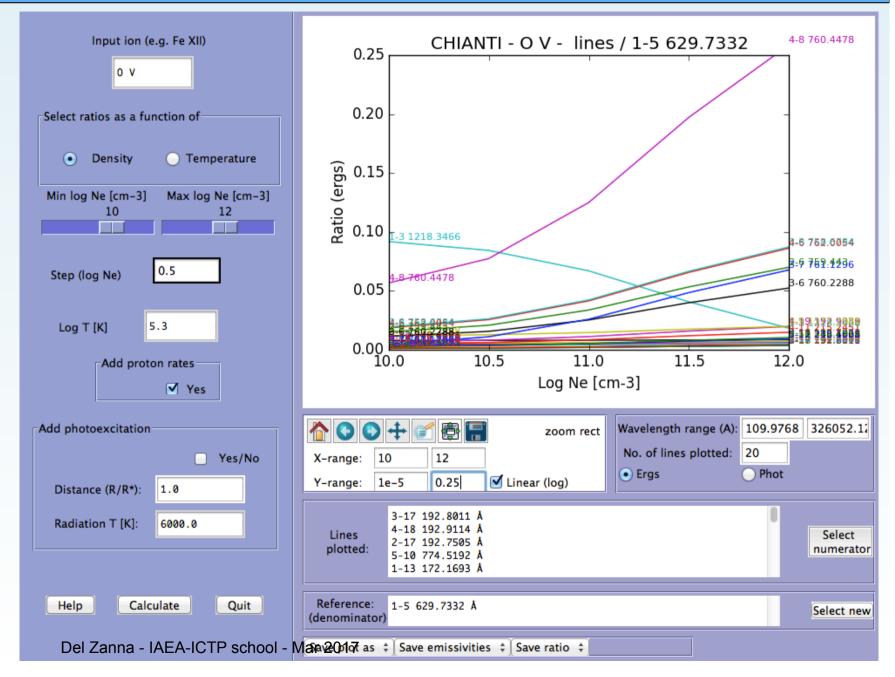
CHIANTI data (ascii)

fe_12.elvlc	Energy levels (theoretical, observed), LSJ for Fe XII (Fe ¹¹⁺)
fe_12.wgfa	Transition probabilities, gf values, theoretical, observed wavelengths
fe_12.splups	Maxwellian-averaged e ⁻ - ion collision strengths. V.8 format: .scups
fe_12.psplus	Same but for protons.
.diparams	DI, DR, RR total rates
.drparams	
.rrparams	

- Experimental wavelengths are taken from NIST but are improved for most important astrophysical ions.
- To tailor for photoionized plasmas the format of the CHIANTI excitation data was changed in version 8 (Del Zanna+2015): actual rates (not fits), and excitations to all levels are included (useful for high-Ne plasma).
- Can include photo-excitation and non-Maxwellian electron distribution.
- Charge-state is calculated in low-density in equilibrium (at present).


IDL GUI applications

How do I measure densities, temperatures from line ratios?


♦ Energy ♦ Photons	on rates yes vino buttent		Density intervals \$\$\phi 1.0 \$\$ 0.5 \$ Temp, kay T [K]: [1]		biclide photoexcitation?	
	CHAM	ige param	ETERS			
NUMERATOR: 629.733 Choose a new line INTENSITY: 0.00 SIGM	IA: 0.00 PLOT ERROR BARS	Der Pha Pro	Temp [K]: 5.35 sity intervals: 0.2 toexc: not included tons: included ts: energy		DERIVED DENSITY [cm-3]: Input line intensities	
j629.733 Å 1 - 5 2s2 1S0 - 2s	s.2p 1P1		.30	O V line r	ntios relative to 629,733 A	, 4-8 760.448 Å
DENOMINATOR: 629.733		0	.25 -		/	/ 4-8 /80.448 A
Choose a new line INTENSITY: 1.00 SIGMA: 0.00 PLOT ERROR BARS			.20 -			- - - - - - - - - - - - -
j629.733 Å 1 - 5 2s2 1S0 - 2s	.2p 1Ρ1		.15			- - - - - - - - - - - - -
Low wavelength limit (Å)	108.977		.10 - 		+	. 4=8 762.006 Å - 3=9 769.133 Å . 3−6 760.229 Å
 High wavelength limit (Å)	326053.] 	=		
			8 9	10 Log ₁₀) 11 (Electron density [cm ⁻³])	12 13
SAVE HARDCOPY			 Selected lines All lines 	Y-AXIS SCA	ALING	Upper limit:
Send comments to chianti_help@ nna - IAEA-ICTP sch			OW RATIO VALUES	🔶 Linear	∻ Automatic (ynozero) ♦ Manual	Lower limit: 0.01[e+00

IDL GUI applications

What is the spectrum in a wavelength band for specific densities, temperatures ?

Python GUI (soon available)

Python GUI

5-20 220.3531

5-12 248.4608

4-9-769243488

5-56-179-2197

Select

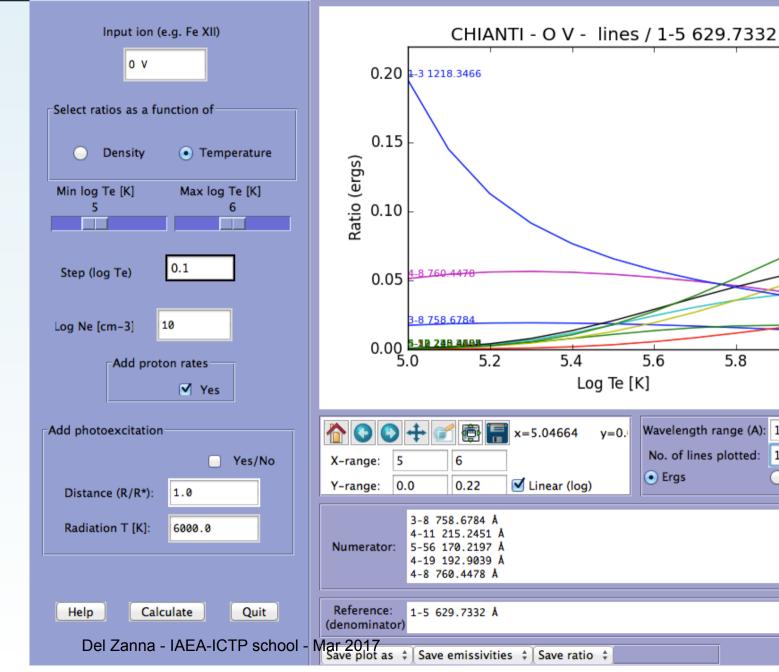
numerator

Select new

6.0

5.6

Ergs


5.8

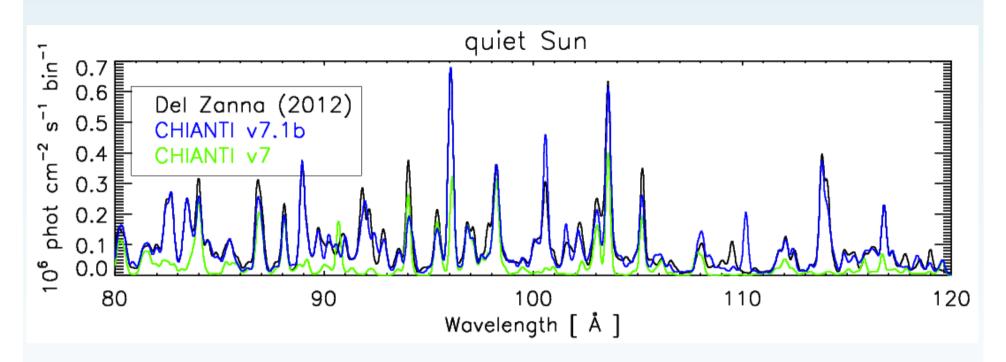
No. of lines plotted:

Wavelength range (A): 109.9768 326052.12

10

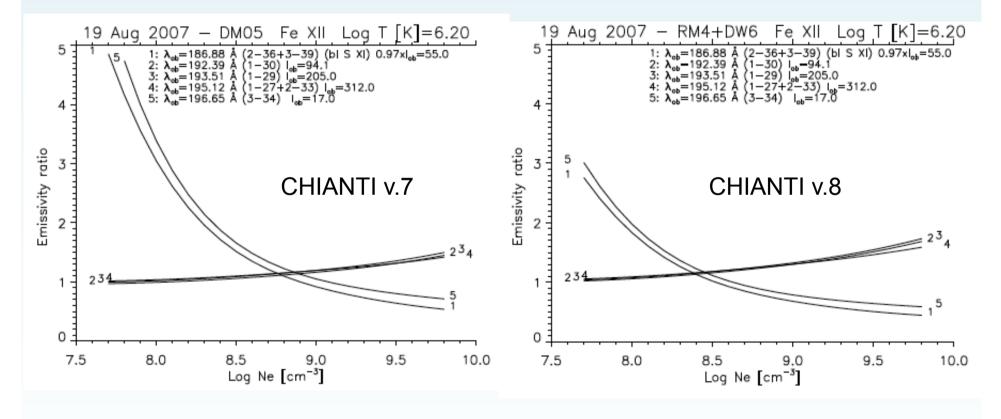
Phot

CHIANTI v.8 electron rates


Most of the e-ion collision rates from large-scale R-matrix calculations within the UK APAP network (<u>www.apap-network.org</u>).

We have been the main ion atomic data provider for fusion (e.g. ADAS, see http://open.adas.ac.uk/) and astrophysics.

- Neutrals: S I, N I, C I
- Low charge states: Fe III, S II, S III, Fe VI
- Coronal ions: large-scale calculations up to n=4,5: Fe VIII, IX, X, XI, XII, XIII, Ni XI, Ni XV (Del Zanna et al.)
- He-like (Whiteford et al. 2001)
- Li-like (Liang & Badnell 2011)
- B-like (Liang Badnell & Zhao 2012)
- Ne-like (Liang & Badnell 2010)
- Na-like (Liang, Whiteford & Badnell 2009a,2009b)
- F-like (Witthoeft, Whiteford, Badnell 2007)


Fe updates have a major effect on Soft X-rays

V.7: literature before 2012V.7.1b: using DW scattering data from FACV.8 (Del Zanna): using R-matrix scattering data

Fe XII and Hinode EIS

The new Fe XII ion model reduces densities from EUV lines, resolving long-standing discrepancies.

Del Zanna+(2012)

Del Zanna - IAEA-ICTP school - Mar 2017