

Multiscale Modeling of Hydrogen Trapping and Clustering at Nanovoids and Dislocations in BCC Metals

Jun Song

Materials Engineering

McGill University, Montréal, Quebec, Canada

Introduction

Why hydrogen matters

High H chemical potential

- Acid environments
- Pressurized H₂ storage
- Nuclear fusion reactor

Structural failures in metals

- Embrittlement
- Porosity/swelling
- Bubble/blister formation

Introduction

However, H-defect interactions at nanoscale remain *challenging*...

To do *in situ* observations under • irradiation

Outline :

H-nanovoid

- Structures and energies of nanovoids
- Hydrogen trapping in nanovoids

H-dislocation

- H clustering at dislocations
- H stabilized junction and loop formation

H-wall reaction in fusion reactor

[1] Zayachuk, Y., et al. "Combined effects of crystallography, heat treatment and surface polishing on blistering in tungsten exposed to high-flux deuterium plasma." *Nuclear Fusion* 56.8 (2016): 086007. [2] Jia, Y. Z., et al. "Mechanism for orientation dependence of blisters on W surface exposed to D plasma at low temperature." *Journal of Nuclear Materials* 477 (2016): 165-171.

Multiscale Modeling

First-principles DFT + OKMC

• E.g., reproduction of He TDS in W

Valles, G., et al. "The influence of high grain boundary density on helium retention in tungsten." Journal of Nuclear Materials 457 (2015): 80-87.

Strail McGill

🐯 McGill

H-Nanovoid Systems

H-Nanovoid Systems

search

Structures and energies of nanovoids

Hydrogen trapping in nanovoids

- **Structure** Nanovoid=cluster of vacancy Wigner-Seitz (WS) polyhedrons
 - Compact structures (minimum WS area) have lowest energies Wigner-Seitz polyhedrons of bcc vacancies

Wigner-Seitz (WS) Polyhedrons and Squares

	<i>ij</i> =10	11	12	21	22	Sum
V_1	6					6
V_2	6	6				12
V_3	8	6	2	1		17
V_4	8	8	4		2	22
V_5	8	10	6		2	26
V_6	10	8	8		4	30
V_7	10	10	10		4	34
V_8	12	8	12		6	38

Were McGill

H-Nanovoid Systems

search

Energy

Structures and energies of nanovoids

Hydrogen trapping in nanovoids

- **Structure** Nanovoid=cluster of vacancy Wigner-Seitz (WS) polyhedrons
 - Compact structures (minimum WS area) have lowest energies
 - Formation energy varies linearly against WS area
- Parameter-free model for accurate binding energy prediction

H-Nanovoid Systems

Hydrogen trapping in nanovoids

Atomistic characterization

• **First-principles (DFT)**: *Brute-force*, mostly limited to very small voids (e.g., V₁)

J. Nucl. Mater. 476 (2016) 36

> 10^{22} possible structures for multiple H adsorption in V₆! Ohsawa et al. PRB. 85 (2012) 094102

McGill

🐯 McGill

H-Nanovoid Systems

Hydrogen trapping in nanovoids

Atomistic characterization

Molecular statics/dynamics (MS/MD)

However, results highly interatomic *potential dependent*!

J. Nucl. Mater., 463, 347-350

🐯 McGill

H-Nanovoid Systems

H in Nanovoids

DFT & Ab-initio MD:

V₁

H *spatial distribution* in nanovoids in W

- H adatoms adsorb on Wigner-Seitz (WS) squares on nanovoid surfaces
- H_2 forms in nanovoid core ($V_{n\geq 3}$) •

Probability density function in different nanovoids at 600K. Red spheres: cores of constituting vacancies. Black lines: edges of Wigner-Seitz cells.

Adsorption sites and energies

🐯 McGill

H adatoms on nanovoid surface (W)

- 5 (ij) types of WS squares based on neighboring vacancy number
- **5 distinct H energy levels**, directly related to 5 types of WS squares
- H sequentially occupy WS squares with the lowest energy

H-H Repulsion

However, **H-H repulsion** comes in as H saturates the nanovoid First, *pairwise* H-H repulsion:

- Numerated ~1700 H-H structures in $V_{1\sim4}$ and V_8
- H-H are **mutually exclusive**, decay rapidly with distance
- Interaction energy is approximately a power function of *d*:

However, H-H repulsion comes in as H saturates the nanovoid

A nanovoid with *multiple* H adatoms.

Total trapping energy $E(H_n, V_m H_n) = \sum_{k=1}^n E(H_1, V_m H_1^{S_k}) + E^{int}(V_m H_n).$

H-H interaction $E^{int}(V_mH_n)$ well approximated by simple summation of all pairwise H-H interaction terms!

J. Hou et al. "Predictive model of hydrogen trapping and bubbling in nanovoids in bcc metals." Nature Materials 2019 (18), 833–839

However, H-H repulsion comes in as H saturates the nanovoid

A nanovoid with *multiple* H adatoms.

Total trapping energy $E(H_n, V_m H_n) \cong \sum_{k=1}^n E_k^{ij} + A_s \sum_{k<l}^n d_{kl}^{-5}$

Prediction of trapping energetics of multiple H in a nanovoid achieved

However, configuration of H adatoms still necessary...

How about a more *general* nanovoid and *scale-up*?

Simplification with approximations:

- Sequential adsorption of adatoms on WS squares
- *Maximization* of H-H distance → *uniform distribution*
- *Closed-pack* of H adatoms on nanovoid surface
- *Nearest-neighbor* H-H consideration ⇐ d⁻⁵ fast decay

Average NN H-H distance

$$d = \left(\frac{2a}{\sqrt{3}n}\right)^{0.5}$$
, *a* is nanovoid surface area

Multiple H-H interaction

$$E(H_n, V_m H_n) \cong \sum_{k=1}^n E_k^{ij} + A_s \sum_{k

$$E(H_1, V_m H_n) = E_n^{ij} + \frac{\partial E^{int} (V_m H_n)}{\partial n}$$

$$E(H_1, V_m H_n) = E_n^{ij} + \frac{\partial E^{int} (V_m H_n)}{\partial n}$$

$$E(H_1, V_m H_n) = E_n^{ij} + 7.3A_s \left(\frac{n}{a}\right)^{2.5}$$$$

Trapping energy of the *n*th H

H in Nanovoids

DFT & Ab-initio MD:

V₁

H *spatial distribution* in nanovoids in W

- H adatoms adsorb on Wigner-Seitz (WS) squares on nanovoid surfaces
- H_2 forms in nanovoid core ($V_{n\geq 3}$) •

Probability density function in different nanovoids at 600K. Red spheres: cores of constituting vacancies. Black lines: edges of Wigner-Seitz cells.

H₂ Formation in Nanovoid Core

Approximation of a spherical nanovoid

• Equation of states (EOS) for H₂

$$p = A_c \left(\frac{n_c}{v}\right)^3 \quad \begin{array}{l} p: H_2 \text{ pressure} \\ n_c: 2 \times \# \text{ of } H_2 \text{ molecule} \\ v: \text{ core volume} \\ A_c: \text{ constant, } \sim 8.01 \text{ eV/}\text{\AA}^5 \end{array}$$

• Energy state of a H atom

If in core H₂ molecule $E(H_1, V_m H_n) = \int_0^p \left(\frac{\partial v}{\partial n}\right)_p dP = \frac{3}{2}A_c \left(\frac{n}{v}\right)^2,$ If on surface as an adatom $E(H_1, V_m H_n) = E_n^{ij} + \frac{\partial E^{int} (V_m H_n)}{\partial n}$ $\cong E_n^{ij} + 7.3A_s \left(\frac{n}{a}\right)^{2.5}$

J. Hou et al., Nature Materials 2019 (18), 833-839

In equilibrium (n_c in H_2 and n_s as adatoms): $E(H_1, V_m H_n) = \frac{3}{2}A_c \left(\frac{n_c}{v}\right)^2$ $= E_{n_s}^{ij} + 7.3A_s \left(\frac{n_s}{a}\right)^{2.5}$

 n_c and n_s fully determined

 $\begin{aligned} \text{Meanwhile...} \\ \mu_{core}^{H} &= \mu_{B}^{H} = E_{Bulk}^{H} + k_{B}T \ln\left(\frac{C_{H}}{1 - C_{H}}\right) \Longrightarrow p = \frac{1}{\sqrt{A_{c}}} \left[\frac{2}{3} \left(E_{Bulk}^{H} + k_{B}T \ln\left(\frac{C_{H}}{1 - C_{H}}\right)\right)\right]^{\frac{3}{2}}, \end{aligned}$

Full Prediction of H in Nanovoid

THE EFFECTS OF HYDROGEN SUPERSATURATION AND DEFECT STABILIZATION IN NUCLEAR FUSION REACTOR MATERIALS | April 11-12, Aix-en-Provence, France

Strain McGill

Generality of the Model

BCC systems of Mo, Cr, Fe

- Adsorption on WS squres, with 5 energy levels
- *d*⁻⁵ pairwise H-H repulsion
- EOS of H₂ is not material dependent

St McGill

Application of the Model

McGill

Part I: Summary

- H adatoms adsorption on Wigner-Seitz (WS) squares on nanovoid surface, with 5 distinct energy levels
- H adatoms are mutually exclusive, with *d*⁻⁵ repulsion energy (pairwise)
- Combining EOS of H₂, built a predictive model for H trapping and bubble formation in nanovoids
- Multiscale simulations based on the model reproduced related TDS experiments

McGill

Outline :

H-nanovoid

- Structures and energies of nanovoids
- Hydrogen trapping in nanovoids

H-dislocation

- H clustering at dislocations
- H stabilized junction and loop formation

H Blister Formation w/o Irradiation

H induced crack shaped blister

- No irradiation, nanovoid
- Intra-granular blister, GB
- Purified W, second phase

How does H blister nucleate?

Weak H-H attraction in BCC metals, marginal H clustering 0.0 -0.1 ^{H,H}(eV) -0.2 -0.3 E, -0.4 -0.5 2 3 Configuration

E.g., {110}<111>/2 edge dislocation in Fe

Chen, W. Q., et al. "Nucleation mechanism of intra-granular blisters in tungsten exposed to hydrogen plasma." *Scripta Materialia* 187 (2020): 243-249. Von Pezold, et al. "H-enhanced local plasticity at dilute bulk H concentrations: The role of H–H interactions and the formation of local hydrides." *Acta Materialia* 59.8 (2011): 2969-2980. Kong, Xiang-Shan, et al. "First-principles calculations of transition metal solute interactions with hydrogen in tungsten." *Nuclear Fusion* 56.2 (2015): 026004.

Long-range Elastic Attraction

However,

• For large H clusters, long-range **elastic attraction** exists.

🐯 McGill

Highly anisotropic volume tensor

<001> tension preference

Facilitate H clustering at <001> edge

E.g., {110}<111>/2 edge dislocation in Fe

<001> dislocation loop formation in FeAl during H charging and deformation

Facilitate H clustering at <001> edge Reduce line energy of <001> edge

> <001> blister from dense dislocation network in W under H charging

Martensite show {001} HE fracture, with intersecting dislocation bands beneath fracture surface

[1] D. Yun, T. Hajilou, D. Wan, N. Kheradmand, and A. Barnoush. "In-situ micro-cantilever bending test in environmental scanning electron microscope: Real time observation of hydrogen enhanced cracking." Scripta Materialia 127 (2017): 19-23.
 [2] Chen, W. Q., X. Y. Wang, K. L. Li, Y. N. Wang, T. W. Morgan, B. Xu, Y. L. Chiu, and W. Liu. "Nucleation mechanism of intra-granular blisters in tungsten exposed to hydrogen plasma." *Scripta Materialia* 187 (2020): 243-249.
 [3] Cho, L., et al. "Characteristics and Mechanisms of Hydrogen-Induced Quasi-Cleavage Fracture of Lath Martensitic Steel." *Acta Materialia*: 116635.

McGill

Predictive model for nanovoid structure and energetics

Predictive model for H trapping and bubble formation in nanovoids,

Strong stress anisotropy of H clustering, enable <001> junction/loop formation

 $H_f^H(\widetilde{\boldsymbol{\sigma}}^{ext}) = H_f^H(0) - \widetilde{\boldsymbol{\sigma}}^{ext}: \widetilde{\boldsymbol{\Omega}}^H(0)$

Other Relevant Topics

C. Chen, J. Zhang and J. Song Acta Materialia 208 (2021) 116745

C. Chen and J. Song, International Journal of Plasticity 152 (2022)

 $\vec{b} = \frac{1}{2} [1\overline{2}1]$

(b)

(a)

H-nanovoid H-dislocation Complex events involving secondary defects or defect ensembles Evolution (*unfaulting*) of dislocation loops

 Developed a *general* and *flexible* approach for constructing configurations of *arbitrary shaped* dislocation loops & faults

THE EFFECTS OF HYDROGEN SUPERSATURATION AND DEFECT STABILIZATION IN NUCLEAR FUSION REACTOR MATERIALS | April 11-12, Aix-en-Provence, France

103231

 $\vec{x}_3 = [111]$

Other Relevant Topics

unfaulting conditions

2.

FUSION REACTOR MATERIALS | April 11-12, Aix-en-Provence, France

103231

Other Relevant Topics

ς.

Acknowledgement & Others

Dr. Jie Hou Materials Engineering, McGill University

Prof. Xiang-Shan Kong Materials Science and Engineering, Shandong University

Prof. Cheng Chen School of Aeronautics, Northwestern Polytechnical University

compute • calcul

Acknowledgement

McGill Hydrogen Embrittlement Facilities (MHEF) <u>https://mhef.lab.mcgill.ca/</u>

Co-directed by Prof. Stephen Yue, Prof. Jun Song, Dr. Salim Brahimi

Research directions:

- i. Multicale HE studies involving experiments, DFT/atomistic and FEA simulations
- ii. Susceptibility of fastener and pipeline materials to HE
- iii. Coating processes and embrittlement
- iv. Susceptibility of aerospace materials and coating processes

W McGill

Thank You Questions?