Possible defect stabilization due to simultaneous deuterium exposure during annealing in self-ion damaged W

M.J. Simmonds, A. Založnik, T. Schwarz-Selinger ¹, M.I. Patino, M.J. Baldwin, R.P. Doerner, and G.R. Tynan

Center for Energy Research, UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0417, USA

¹ Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching, Germany
Motivation

- Synergistic effects are known to affect defect creation/recovery and have a strong effect on hydrogen isotope retention.

- There is a strong need for simultaneous experiments (hydrogen isotope exposure during defect creation/annealing).

- These synergistic effects need to be included in the models in order to accurately predict hydrogen isotope retention and permeation.
Studying annealing of heavy-ion damaged W

Vacuum annealing (W-A-D)

W self-damaging → Annealing (vacuum) → D plasma exposure → NRA & TDS
Effect of D filled defects on annealing

Vacuum annealing (W-A-D)

W self-damaging → Annealing (vacuum) → D plasma exposure → NRA & TDS

Vacuum annealing after plasma exposure (W-D-A-D)

W self-damaging → D plasma exposure → Annealing (vacuum) → D plasma exposure → NRA & TDS

M. Pečovnik et al. 2020 Nucl. Fusion 60 106028
D presence during annealing clearly different

- monotonic decrease in LT peak
- monotonic decrease in HT peak

- large change in LT peak at 600 K anneal
- little change in HT peak until 800 K anneal
Next step: study simultaneous annealing+plasma

Vacuum annealing (W-A-D)

W self-damaging → Annealing (vacuum) → D plasma exposure → NRA & TDS

Vacuum annealing after plasma exposure (W-D-A-D)

W self-damaging → D plasma exposure → Annealing (vacuum) → D plasma exposure → NRA & TDS

Annealing during plasma exposure (W-D-AD-D)

W self-damaging → D plasma exposure → Annealing + D plasma → D plasma exposure → NRA & TDS
W-D (no annealing fiducial)

- strong D retention in damaged zone (< 2.2 µm)
Retention diverges for 473 K anneal

- strong D retention in damaged zone (< 2.2 µm)
- D retention change after vacuum anneal or plasma anneal

<table>
<thead>
<tr>
<th>A (K)</th>
<th>W-A-D</th>
<th>W-D-AD-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>473</td>
<td>small decrease</td>
<td>small increase</td>
</tr>
</tbody>
</table>
Retention continues to diverge at 573 K

- strong D retention in damaged zone (< 2.2 µm)
- D retention change after vacuum anneal or plasma anneal

<table>
<thead>
<tr>
<th>A (K)</th>
<th>W-A-D</th>
<th>W-D-AD-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>473</td>
<td>small decrease</td>
<td>small increase</td>
</tr>
<tr>
<td>573</td>
<td>further decrease</td>
<td>slight increase</td>
</tr>
</tbody>
</table>

![Graphs showing D concentration vs depth for W-A-D and W-D-AD-D at different temperatures](image-url)
Retention ~constant up to 673 K plasma anneal

- strong D retention in damaged zone (< 2.2 µm)
- D retention change after vacuum anneal or plasma anneal

<table>
<thead>
<tr>
<th>A (K)</th>
<th>W-A-D</th>
<th>W-D-AD-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>473</td>
<td>small decrease</td>
<td>small increase</td>
</tr>
<tr>
<td>573</td>
<td>further decrease</td>
<td>slight increase</td>
</tr>
<tr>
<td>673</td>
<td>further decrease</td>
<td>almost no change</td>
</tr>
</tbody>
</table>

- NRA shows nearly constant D retention in damage zone up to 673 K for plasma anneal, defect stabilization
Significant D depopulation and recovery at 773 K

- strong D retention in damaged zone (< 2.2 µm)
- D retention change after vacuum anneal or plasma anneal

<table>
<thead>
<tr>
<th>A (K)</th>
<th>W-A-D</th>
<th>W-D-AD-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>473</td>
<td>small decrease</td>
<td>small increase</td>
</tr>
<tr>
<td>573</td>
<td>further decrease</td>
<td>slight increase</td>
</tr>
<tr>
<td>673</td>
<td>further decrease</td>
<td>almost no change</td>
</tr>
<tr>
<td>773</td>
<td>little change</td>
<td>significant decrease</td>
</tr>
</tbody>
</table>

- NRA shows nearly constant D retention in damage zone up to 673 K for plasma anneal defect stabilization
W-D (fiducial for comparison)

- two desorption peaks
 - low-temperature (LT) mono-vacancies/dislocations?
 - high-temperature (HT) vacancy clusters?

E. Markina et al. 2015 J. Nucl. Mater. 463 329–32
Primarily LT grows (beyond damage zone)

- two desorption peaks
 - low-temperature (LT) \(\square \) mono-vacancies/dislocations?
 - high-temperature (HT) \(\square \) vacancy clusters?

<table>
<thead>
<tr>
<th>A (K)</th>
<th>W-A-D</th>
<th>W-D-AD-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>473</td>
<td>small decrease of LT no change of HT</td>
<td>strong increase of LT small increase of HT</td>
</tr>
</tbody>
</table>

- NRA shows nearly constant D retention in damage zone up to 673 K for plasma anneal \(\square \) defect stabilization
LT & HT grow (beyond damage zone)

- two desorption peaks
 - low-temperature (LT) □ mono-vacancies/dislocations?
 - high-temperature (HT) □ vacancy clusters?

<table>
<thead>
<tr>
<th>A (K)</th>
<th>W-A-D</th>
<th>W-D-AD-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>473</td>
<td>small decrease of LT</td>
<td>strong increase of LT</td>
</tr>
<tr>
<td></td>
<td>no change of HT</td>
<td>small increase of HT</td>
</tr>
<tr>
<td>573</td>
<td>strong decrease of both LT</td>
<td>shape changed</td>
</tr>
<tr>
<td></td>
<td>& HT</td>
<td>LT & HT not resolved</td>
</tr>
</tbody>
</table>

- NRA shows nearly constant D retention in damage zone up to 673 K for plasma anneal □ defect stabilization
Significant growth of HT (beyond damage zone)

- two desorption peaks
 - low-temperature (LT) □ mono-vacancies/dislocations?
 - high-temperature (HT) □ vacancy clusters?

<table>
<thead>
<tr>
<th>A (K)</th>
<th>W-A-D</th>
<th>W-D-AD-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>473</td>
<td>small decrease of LT</td>
<td>strong increase of LT</td>
</tr>
<tr>
<td></td>
<td>no change of HT</td>
<td>small increase of HT</td>
</tr>
<tr>
<td>573</td>
<td>strong decrease of both LT & HT</td>
<td>shape changed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LT & HT not resolved</td>
</tr>
<tr>
<td>673</td>
<td>further decrease of both LT & HT</td>
<td>decrease of LT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>strong increase of HT</td>
</tr>
</tbody>
</table>

- NRA shows nearly constant D retention in damage zone
 - up to 673 K for plasma anneal □ defect stabilization
Significant shift to higher T for HT

- two desorption peaks
 - low-temperature (LT) □ mono-vacancies/dislocations?
 - high-temperature (HT) □ vacancy clusters?

<table>
<thead>
<tr>
<th>A (K)</th>
<th>W-A-D</th>
<th>W-D-AD-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>473</td>
<td>small decrease of LT</td>
<td>strong increase of LT</td>
</tr>
<tr>
<td></td>
<td>no change of HT</td>
<td>small increase of HT</td>
</tr>
<tr>
<td>573</td>
<td>strong decrease of both LT</td>
<td>shape changed</td>
</tr>
<tr>
<td></td>
<td>& HT</td>
<td>LT & HT not resolved</td>
</tr>
<tr>
<td>673</td>
<td>further decrease of both</td>
<td>decrease of LT</td>
</tr>
<tr>
<td></td>
<td>LT & HT</td>
<td>strong increase of HT</td>
</tr>
<tr>
<td>773</td>
<td>little change of both</td>
<td>strong decrease of LT</td>
</tr>
<tr>
<td></td>
<td>LT & HT</td>
<td>HT shift and still high</td>
</tr>
</tbody>
</table>

- NRA shows nearly constant D retention in damage zone up to 673 K for plasma anneal □ defect stabilization
Total D Retention (TDS)

- Initial increase probably due to higher D fluence in the case of W-D-AD-D
- Clearly very different behavior of defect recovery when D is present
- Modeling can give some insight into defect stabilization in the presence of D
Vacuum anneal well fit by 3 traps

- typically 3 trap types used to model TDS spectra
 - LT peak, HT peak, & HT tail
Plasma anneal needs additional trap

- typically 3 trap types used to model TDS spectra
 - LT peak, HT peak, & HT tail
- this work revealed the existence of the 4th trap type (small vacancy clusters?)
Vacuum anneal trap conc. monotonic decrease

• typically 3 trap types used to model TDS spectra
 ○ LT peak, HT peak, & HT tail
• this work revealed the existence of the 4th trap type (small vacancy clusters?)
• W-A-D monotonically decreasing trap densities
Plasma anneal exhibits complex trap evolution

- Typically 3 trap types used to model TDS spectra
 - LT peak, HT peak, & HT tail
- This work revealed the existence of the 4th trap type (small vacancy clusters?)
- W-A-D \square monotonically decreasing trap densities
- W-D-AD-D \square complex evolution of trap densities
Total D retention (including W-D-A-D)

- open = NRA (damage zone)
- filled = TDS

[1] M. Pečovnik et al. 2020 Nucl. Fusion 60 106028
D presence during annealing clearly different

- W-A-D
 - all traps empty during anneal
- W-D-A-D
 - traps partially D filled □ reduced recovery
 - D continuously desorbed while held-at-temperature

[1] M. Pečovnik et al. 2020 Nucl. Fusion 60 106028
D presence during annealing clearly different

- **W-A-D**
 - all traps empty during anneal
- **W-D-A-D**
 - traps partially D filled \(\Rightarrow\) reduced recovery
 - D continuously desorbed while held-at-temperature
- **W-D-AD-D**
 - traps partially D filled \(\Rightarrow\) reduced recovery
 - D continuously repopulated with D plasma exposure held-at-temperature
 - mobile defects annihilate at surface/GB but defects migrating further into bulk slowed/stabilized by D?

\[\text{Retention [10^2 D/m}^2\]\]

- open = NRA (damage zone)
- filled = TDS

[1] M. Pečovnik et al. 2020 Nucl. Fusion 60 106028
Thank you!

- Annealing of W simultaneously exposed to D plasma:
 - obvious synergistic effects
 - reduced defect recovery → D induced stabilization of defects
 - Further experimental details
 - M.J. Simmonds et al. 2022 Nucl. Fusion 62 036012

- Future:
 - ending Be work (Be box is gone!) and focusing on synergistic effects in W
 - finalizing plans for heavy ion accelerator (NEC) installation/coupling to PISCES-RF
 - improving modeling capabilities, including synergistic effects in the codes
Experimental Details
Sample Prep

- PCW samples:
 - 1.5 mm thick and 6 mm dia
 - polished and recrystallized
Heavy-ion induced defects

- **W-A-D**
 - W self-damaging
 - **W-D-AD-D**
 - W self-damaging
 - **Annealing**
 - D plasma exposure

- **PCW samples:**
 - 1.5 mm thick and 6 mm dia
 - polished and recrystallized

- **W self-damaging:**
 - 20.3 MeV W$^{6+}$ ions at 295 K
 - 7.87×10^{17} ions/m$^2 \rightarrow 0.23$ dpa
D decoration of defects

- **W-A-D**
 - W self-damaging

- **W-D-AD-D**
 - W self-damaging
 - D plasma exposure
 - Annealing
 - D plasma exposure
 - NRA & TDS

- **PCW samples:**
 - 1.5 mm thick and 6 mm dia
 - polished and recrystallized

- **W self-damaging:**
 - 20.3 MeV W{$^{6+}$} ions at 295 K
 - 7.87 x 10^{17} ions/m^2 \equiv 0.23 dpa

- **D plasma exposure:**
 - temperature 383 K
 - flux 1.1 x 10^{21} D/m^2 s
 - impact energy \sim 67 eV
 - fluence 2 x 10^{25} D/m^2 (5 h)
 (1 x 10^{25} D/m^2 before annealing)
Annealing with or without D plasma

- **PCW samples:**
 - 1.5 mm thick and 6 mm dia
 - polished and recrystallized

- **W self-damaging:**
 - 20.3 MeV W$^{6+}$ ions at 295 K
 - 7.87×10^{17} ions/m$^2 \Rightarrow 0.23$ dpa

- **D plasma exposure:**
 - temperature 383 K
 - flux 1.1×10^{21} D/m2s
 - impact energy ~ 67 eV
 - fluence 2×10^{25} D/m2 (5 h)
 - 1×10^{25} D/m2 before annealing

- **Annealing:**
 - 473 K, 573 K, 673 K, and 773 K for 1 h
 - D fluence 4×10^{24} D/m2
Quantification of D retention

W-A-D
- **W** self-damaging

W-D-AD-D
- **W** self-damaging
- **D** plasma exposure
 - **Annealing**
 - **D** plasma exposure

PCW samples:
- 1.5 mm thick and 6 mm dia
- polished and recrystallized

W self-damaging:
- 20.3 MeV W$^{6+}$ ions at 295 K
- 7.87×10^{17} ions/m$^2 \rightarrow 0.23$ dpa

NRA & TDS:
- 3He ions with 0.5, 0.69, 0.8, 1.2, 1.8, 2.4, 3.2, and 4.5 MeV \rightarrow protons and alphas
- TDS at 0.05 K/s

D plasma exposure:
- temperature 383 K
- flux 1.1×10^{21} D/m2s
- impact energy \sim 67 eV
- fluence 2×10^{25} D/m2 (5 h)
 - 1×10^{25} D/m2 before annealing

Annealing:
- 473 K, 573 K, 673 K, and 773 K for 1 h
- D fluence 4×10^{24} D/m2