Possible defect stabilization due to simultaneous deuterium exposure during annealing in self-ion damaged W

<u>M.J. Simmonds</u>, A. Založnik, T. Schwarz-Selinger ¹, M.I. Patino, M.J. Baldwin, R.P. Doerner, and G.R. Tynan

Center for Energy Research, UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0417, USA ¹ Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching, Germany

Motivation

 Synergistic effects are known to affect defect creation/recovery strong effect on hydrogen isotope retention

 There is a strong need for simultaneous experiments (hydrogen isotope exposure during defect creation/annealing)

 These synergistic effects need to be included in the models in order to accurately predict hydrogen isotope retention and permeation

Studying annealing of heavy-ion damaged W

Effect of D filled defects on annealing

M. Pečovnik et al. 2020 Nucl. Fusion 60 106028

D presence during annealing clearly different

Next step: study simultaneous annealing+plasma

W-D (no annealing fiducial)

• strong D retention in damaged zone (< 2.2 μm)

Retention diverges for 473 K anneal

- strong D retention in damaged zone (< 2.2 μm)
- D retention change after vacuum anneal or plasma anneal

	0	·	
A (K)	W-A-D	W-D-AD-D	
473	small decrease	small increase	$0.0 \xrightarrow{1}{0} 0.0 \xrightarrow{1}{0} 0.0$
			W-D-AD-D 2.0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
			depth [μm]
TIOO			

PISCES

0.2

- 383 K - 473 K

W-A-D

2.0

[% .

Retention continues to diverge at 573 K

- strong D retention in damaged zone (< 2.2 μ m)
- D retention change after vacuum anneal or plasma anneal

D retention change after vacuum anneal or plasma anneal			
A (K)	W-A-D	W-D-AD-D	
473	small decrease	small increase	
573	further decrease	slight increase	depth [μm] W-D-AD-D 2.0
			- - - - - - - - - - - - - -

PISCES

0.2 573 K

0.1 pd

0,1 ed 0,1 ed

• 383 K 473 K

W-A-D

depth [µm]

2.0

Retention ~constant up to 673 K plasma anneal

- strong D retention in damaged zone (< 2.2 μm)
- D retention change after vacuum anneal or plasma anneal

A (K)	W-A-D	W-D-AD-D	
473	small decrease	small increase	
573	further decrease	slight increase	2.0
673	further decrease	almost no change	
			L ucentration

Significant D depopulation and recovery at 773 K

- strong D retention in damaged zone (< 2.2 μm)
- D retention change after vacuum anneal or plasma anneal

A (K)	W-A-D	W-D-AD-D
473	small decrease	small increase
573	further decrease	slight increase
673	further decrease	almost no change
773	little change	significant decrease

 NRA shows nearly constant D retention in damage zone up to 673 K for plasma anneal
 defect stabilization

W-D (fiducial for comparison)

Center for Energy Research

- two desorption peaks
 - \circ low-temperature (LT) \Box mono-vacancies/dislocations?
 - o high-temperature (HT) □ vacancy clusters?

Primarily LT grows (beyond damage zone)

- two desorption peaks
 - low-temperature (LT) □ mono-vacancies/dislocations?
 - o high-temperature (HT) □ vacancy clusters?

A (K)	W-A-D	W-D-AD-D	ption flu
473	small decrease of LT no change of HT	strong increase of LT small increase of HT	D desor
			[^] D/m ² s]
			ption flux [10 ¹⁷
	1		esor

LT & HT grow (beyond damage zone)

- two desorption peaks
 - low-temperature (LT) □ mono-vacancies/dislocations?
 - high-temperature (HT) □ vacancy clusters?

A (K)	W-A-D	W-D-AD-D
473	small decrease of LT no change of HT	strong increase of LT small increase of HT
573	strong decrease of both LT & HT	shape changed LT & HT not resolved

Significant growth of HT (beyond damage zone)

- two desorption peaks
 - low-temperature (LT) □ mono-vacancies/dislocations?
 - o high-temperature (HT) □ vacancy clusters?

A (K)	W-A-D	W-D-AD-D
473	small decrease of LT no change of HT	strong increase of LT small increase of HT
573	strong decrease of both LT & HT	shape changed LT & HT not resolved
673	further decrease of both LT & HT	decrease of LT strong increase of HT

Significant shift to higher T for HT

- two desorption peaks
 - \circ low-temperature (LT) \Box mono-vacancies/dislocations?
 - high-temperature (HT) □ vacancy clusters?

A (K)	W-A-D	W-D-AD-D
	small decrease of LT	strong increase of LT
473	no change of HT	small increase of HT
	strong decrease of	shape changed
573	both LT & HT	LT & HT not resolved
	further decrease of	decrease of LT
673	both LT & HT	strong increase of HT
773	little change of both	strong decrease of LT
		HI SNITT and Still high

<u>UC San Diego</u>

Total D Retention (TDS)

- Initial increase probably due to higher D fluence in the case of W-D-AD-D
- Clearly very different behavior of defect recovery when D is present
- Modeling can give some insight into defect stabilization in the presence of D

Vacuum anneal well fit by 3 traps

- typically 3 trap types used to model TDS spectra
 - LT peak, HT peak, & HT tail

Plasma anneal needs additional trap

- typically 3 trap types used to model TDS spectra
 - LT peak, HT peak, & HT tail
- this work revealed the existence of the 4th trap type (small vacancy clusters?)

Vacuum anneal trap conc. monotonic decrease

- typically 3 trap types used to model TDS spectra
 - LT peak, HT peak, & HT tail
- this work revealed the existence of the 4th trap type (small vacancy clusters?)
- W-A-D
 monotonically decreasing trap densities

Plasma anneal exhibits complex trap evolution

- typically 3 trap types used to model TDS spectra
 - LT peak, HT peak, & HT tail
- this work revealed the existence of the 4th trap type (small vacancy clusters?)
- W-A-D
 monotonically decreasing trap densities
- W-D-AD-D
 complex evolution of trap densities

UC San Diego

Total D retention (including W-D-A-D)

D presence during annealing clearly different

- W-A-D
 - all traps empty during anneal
- W-D-A-D
 - \circ traps partially D filled \square reduced recovery
 - D continuously desorbed while held-at-temperature

• filled = TDS

[1] M. Pečovnik et al. 2020 Nucl. Fusion 60 106028

D presence during annealing clearly different

- W-A-D
 - all traps empty during anneal
- W-D-A-D
 - traps partially D filled \Box reduced recovery
 - D continuously desorbed while held-at-temperature
- W-D-AD-D
 - traps partially D filled \Box reduced recovery
 - D continuously repopulated with D plasma exposure held-at-temperature
 - mobile defects annihilate at surface/GB but defects migrating further into bulk slowed/stabilized by D?

- open = NRA (damage zone)
- filled = TDS

[1] M. Pečovnik et al. 2020 Nucl. Fusion 60 106028

Thank you!

- Annealing of W simultaneously exposed to D plasma:
 - obvious synergistic effects
 - reduced defect recovery \Box D induced stabilization of defects
 - Further experimental details
 - M.J. Simmonds et al. 2022 Nucl. Fusion 62 036012
- Future:
 - ending Be work (Be box is gone!) and focusing on synergistic effects in W
 - finalizing plans for heavy ion accelerator (NEC) installation/coupling to PISCES-RF
 - improving modeling capabilities, including synergistic effects in the codes

Experimental Details

Sample Prep

- PCW samples:
 - 1.5 mm thick and 6 mm dia
 - polished and recrystallized

Heavy-ion induced defects

- PCW samples:
 - 1.5 mm thick and 6 mm dia
 - polished and recrystallized
- W self-damaging:
 - 20.3 MeV W⁶⁺ ions at 295 K
 - 7.87 x 10¹⁷ ions/m² □ 0.23 dpa

D decoration of defects

Annealing with or without D plasma

Quantification of D retention

