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In-operando surface measurements during plasma exposure are

required to explore dynamic retention.

PISCES

€ Dynamic retention, including both solute
(un-trapped) and “weakly” trapped D atom:s,
is quickly released after the termination of
the incident plasma flux.
» Ex-situ analysis (e.g. TDS) is not
appropriate.

@ In-operando ion beam analysis (IBA), such as
NRA, has been used to study dynamic
retention in a couple of experiments so far.

€ We have applied LIBS (laser-induced
breakdown spectroscopy) for conducting in-
operando surface measurements.
» In comparison with IBA, an LIBS system
is much simpler, and quicker
measurements are possible.
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Fig. 4. NRA measured retained D fluence in the Mo plate in real-
time; before, during, and after a deuterium plasma exposure with
flux density of 1.8 x 10*! D/m? s and Vs = 100 V.
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An in-operando/in-situ LIBS system has been developed and
upgraded in PISCES-A.
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€ Q-switched Nd:YAG laser (A = 1064 nm, At, ~ 5 ns, E, ~ 115 m)) 922 mm | A

€ A remote-controlled motorized mirror mount enables to quickly
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and accurately control the laser spot location.
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@ Echelle type spectrometer (Andor ME5000) + ICCD camera From laser room
(Andor |Star DH334T)' tdelay ~ 10 ns & tWidth = 2 MS Lens: f= 900 mm o 3
€ Ablation depth: ~350 nm/shot & Spot diameter: ~150 um / M2 w/ motorized mount
N .
@ The laser spot location was moved between each laser shot. r Sample manipulator
. M3 !
@ 20 shots were accumulated to produce an emission spectrum for . Sample target
o 1 Window N
better statistics. - —
€ Around 5 spectra were typically collected for each condition.
» Mean value and uncertainty
€ D1656.1 nm/W | 429.4 nm intensity ratio is used to study
dynamic D retention behavior in W. Steadye_state
plasma source I Mirror PISCES-A
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How can we extract the dynamic retention component from in-
operando LIBS D, signal during steady-state plasma exposure?

PISCES

@ The D, line emission of in-operando LIBS measurements during steady-state plasma exposure
can contain the following multiple components:

» Background D/D, gas excited by steady-state plasma
v" D, line emission was not detected due to the short t , = 2 us.
» Ejected D atoms (dynamic and static retention) excited by steady-state plasma
v' Laser-induced plasma D, emission is localized right on the W surface.
v" The steady-state plasma n, ~ 0.1x10'® m-3 is several orders of magnitude lower
than that of typical laser-induced W plasmas.

= Negligible.

> Dynamic retention excited by laser-induced plasma

» Static retention excited by laser-induced plasma

» Background D/D, gas excited by laser-induced plasma
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The Py, dependence reveals that there is no contribution of Bg gas
to the LIBS signal during plasma exposure at Py, < 1.0 mTorr.

PISCES
@ St was taken under vacuum, and is consistent. 0.5 L S
I . T.~423K E ~75eV ]
- Nollittle ?affect of bg gas S ! T 1
@ StBg linearly increases with Pp,. g 04l :;J'T;i Z?Sr:]n?;)(posure 1.6
- 1 StBg
€ On the other hand, DyStBg is nearly constant at P, < g DySt
. [ [ > 1. . < -
1.0 mTorr, and increases with Py, at > 1.0 mTorr. % 03[ r (102" m2s) ]
q I
@ There is no contribution of Bg gas to in-operando LIBS - 0.75, 1.4 12
D, signal during plasma exposure at P, < 1.0 mTorr. % 02l i
c N
@ Hard to quantify the Bg component at P,, > 1.0 mTorr. S : :
- Not used in further studies. S 01l ¢ $ o *
- i St ] 1
€ Note that no steady-state background plasma emission ! P ~4x10" Torr
was detected even at Py, > 1.0 mTorr. ol . . v
0 0.5 1 1.5 2
Py, (MTorr)
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The dynamic retention component can be extracted from
Dy = DySt (Pp, < 1 mTorr) — St (vacuum).

PISCES

Ambient LIBS signal can contain o
o Condition
background gas contributions from

During Py, < 1 mTorr Dynamic + Static DySt

After Po, < 5x107 Torr Static St
# Dynamic retention: Dy = DySt (P, < 1 mTorr) — St (vacuum)/
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D/W atomic fraction can roughly be converted from D I/W I line ratio.

@ Laser ablation depth: ~ 350 nm
@ Static D/W.,. (0-10nm) ~ 0.1 in the near-surface layer at T, ~ 300 K [1].
@ Static D/W,., (10-350nm) ~ 10 in a plateau region [2].

& [>2°" D W, dz

0nm

= D/W,.<5,(0-10nm) x 10 nm + D/W,.5;(10-350nm) x 340 nm
=0.1x10 x 10° + 10 x 340 x 10° ~ 1 x 10 (dominated by D/W in SSL)

€ Dynamic retention is assumed to be localized in the near-surface layer.
» Dynamic retention can be negligible in the deeper region because of
the low solubility of W.
@ D I/W lintensity ratio: Dy = St at T, ~ 350 K (and I'; ~ 0.9x10%! m2s1)

350nm

& [ D/Wyydz= [0 D/ Wedz

0nm 0

- D/WDy(O-IO nm)x10 nm=1x10° > D/WDy(O-lO nm) ~ 0.1
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[1] L. Gao et al., NF2017
[2] V.Kh. Alimov et al., INM2005
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The behavior of dynamic retention of D in W is systematically
explored, while varying the plasma exposure parameters.

PISCES

@ Apply the conversion factor (D/W ~ 0.70 x D I/W |) to the following parameter
dependence study.

@ Incident ion energy, E, dependence: E, ~ 45— 175 eV

In each parameter scan, the
= other parameters were kept
as constant as possible.

€ Sample temperature, T,, dependence: T, ~ 348 — 573 K

@ Incident ion flux, T, dependence: I'; ~ 0.26x10%! — 2.9x10%! m2s’!
» Alow flux range because of P, <1 mTorr

@ Effect of He bubbles
» Sequential plasma exposure from pure He to pure D
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Measured dynamic D retention in W dependson T, and I,
while no/little E; dependence is observed.

€ No clear E, dependence of all three
components is seen in the range of

E, ~ 45— 175 eV.

0.15 [

DySt +

St

01

D/W atomic fraction
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@ All three components monotonously 4 Dy linearly increases with increasing IT',,
and saturates at I, > 0.75x10% m2sL,

D/W atomic fraction

decrease with increasing T..
@ The T, dependence of Dy is stronger
than that of St.

0.01 —

Dy = DySt - St

Py, ~0.3 mTorr, E, ~ 75 eV, T, ~ 0.870.11x10°" m®s™
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@ DySt (St) only slightly increases

(decreases) or both are nearly
constant with increasing I'..

0.1

D/W atomic fraction

0.01

I PD2 ~0.3-1 mTorr, TS ~ 423 K, Ei ~75eV

I
4
P
A
-
-

D/W ~ 0.063

atT; = 0.75x10%' m?2s™

45 eV
135eV
- DW =007 x12% 1758V 1
[ atT,<0.75x10°' m?s" |
L L TR N |
0.1 1

T, (1 02! m'23'1)
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Observed trends on E, and T, are qualitatively consistent with a
global model prediction (E.A. Hodille et al., PRM 2018).

@ The global model assumes two kinds of “trapping” sites: interstitial sites and
single vacancies (with various VH,).
@ The global model predicts that H atoms trapped in single vacancies are
dominant over solute H in the total retention, when an SSL is formed.
@ |In our experiments, the amount of dynamic retention is comparable to that of
static retention. 7
> In addition to solute H, “weakly” trapped H atoms in vacancies (E, < 1 eV?) , Dy = DySt - St
should/may also be treated as dynamic retention. Pog~03mTa, € ~ 756V, ~08750.1 110" s

> LIBS cannot distinguish solute and weakly trapped D atoms. %500 350 400 450 500 550 600

PISCES ———

0.1+

D/W atomic fraction

@ The T, dependence of Dy is observed to be stronger than that of St. 0.001 | |
» De-trapping energies of solute & weakly trapped D (dynamic retention)
are lower than those of strongly trapped D (static retention).
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€ The model prediction is qualitatively consistent with our observed trends on E,
and T, for both dynamic (Dy) and total (DySt) retention.
» The very weak or no E; dependence and the decreasing retention with
increasing T.. i e = 1075

Total solubility x_ (at.fr.)
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There is a discrepancy between our measurement and the global
model prediction in the I'; dependence.

PISCES
€ DySt (St) only slightly increases (decreases) or both are € The model predicts a strong increase of the
nearly constant with increasing I.. total retention with an increase in I..
€ Dy saturates. @ Does the total retention saturate?
» May interstitial & trapping sites saturate with D?

» May diffusion/recombination/reflection properties 0.001
effectively change with the high fraction of D? - A ,
= N Gine = 10%*m™2s7H )
b 10" E.A. Hodille et al.,
T T T T T T L “ -,
" Pp,~0.3-1mTorr, T~ 423 K, E, ~ 75 eV ~ PRM 2018
- // x ~.
g 107
DySt =
. e
[ - = _
S 01 L s + | = 10° L 10%°
g o , ‘ - k. 10
HS ******* S, . ol ] —- = ******: g -11 108 |
IS Dy = ] A 1
S DySt - St 1 |
© E 13 Dinc = 10"7m™2s7!
- 10' 1 1 1 1
% w0088 300 400 500 600 700 800
atT, =0.75x10" m~s
. ¥ Temperature (K)
01 + _ 0.94 175 eV i
0.0 L’ D/W =0.07xT; ] FIG. 4. Total solubility of hydrogen (bold lines) implanted at Rp
[ atT <0.75x10%" m3s™ ] for various incident fluxes ranging from ¢, = 10'7 to 10* m=2s~!
: P ST P " P— plotted as a function of the temperature of implantation and for
0.1 1i an incident energy of Ej,. = 500eV/ion. The fraction of hydro-
21 -2 -1 gen trapped at interstitial sites is also plotted in dotted lines for
[ (10° m7s )

comparison.
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MD simulations show stress-induced H self-trapping in W
(R.D. Smirnov and S.l. Krasheninnikov NF 2018).

PISCES
@ Initially perfect bcc W lattice is assumed. ® With a pre-existing @ De-trapping energy of H
@ No change in W lattice and H behavior at dislocation, lower interstitial atoms from a platelet.
g
interstitial H/W < 1 at.%. H/W =0.3-1at.% are % “Weakly traooed” |
@ At interstitial H/W = 10 at.%, H atoms quickly enough to form self-trapped e TWeakly trapped™ |
start to agglomerate into multiple platelets. H structures (platelet). f e N SRECIN
@ H self-trapping phenomenon leads to the @ s @ sns o] wteE 'i‘
spontaneous formation of platelets. Sy SO USRS N R ETCEET.
‘L-. 1 . o = T=1000K
0.71 . 1300K
] 4 1500K
o
0 500 1,000 1,500
Ny

L BETEE Figure 12. The evaluated hydrogen atom de-trapping energy from
: '\’ N the platelet-like structure formed near the edge-dislocation as

function of the number of hydrogen atoms in the structure for the
different system temperatures. Color in this figure is available on-
. g . e . line.
e UL ... .| 4 This stress-induced H self
1. L. trapping mechanism can
Figure 3. Platelet-like structures of self-trapped hydrogen atoms (purple dots) forming at 10 at.% hydrogen density in the initially perfect Figure 4. Top and front views of spatial distribution of hydrogen also Contr'bUte to the

bee tungsten lattice at 0.5 ns (a), 5 ns (b), and 50 ns (c¢) simulated time. The black lines represent edges of the simulation box. The vector

- 185 a4 S\ nd - : black : I ! atoms (purple dots) near the edge dislocation (green line) in
tripod indicates principal directions of the initial bee tungsten lattice. Color in this figure is available on-line.

tungsten sample with 1 at.% hydrogen at 5 ns (a) and 80 ns (b) surface Super-SaturatiOn.

simulated time. The vector tripod shows coordinate system used in
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Dynamic D retention in W is not strongly affected by He bubbles
in the near-surface region.

PISCES
Pre-He: E, ~ 60 eV, TS ~773 K
@ First, a W target was exposed to pure He plasma at T, ~ 773 D: ¢ ~3x10%* m?, P, ~ 0.3 mTor, T_ ~ 423 K, E, ~ 75 eV
K to produce He bubbles in the near-surface region. S e B B B B
@ Then, the W target was exposed to pure D plasma at T, ~ : ]
423 K. 0.15 - T ® “ o
€ Dynamic retention is not strongly affected by He bubbles é : @ DySt
in the near-surface region. & L I | .
E 0.1 :— - ’T —:
@ Static retention in the near-surface region slightly increases CE, o B - St T T
with increasing He fluence. © ' m . I
» D atoms can be trapped around He bubbles [e.g. S. % 0.05 - - Y _ 1 ]
Markelj et al., NF2020]. B, ¢ - -¢
Dy =DySt-St -
O..|....|....|....|....|....|....|..

0) 1 2 3 4 5 6
He fluence (1025 m'2)
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D retention properties of W during plasma exposure have been
investigated in PISCES-A using the in-operando LIBS system.

PISCES

@ E. dependence
» No clear dependence of Dy, St, and DySt in the range of E; ~ 45 — 175 eV.
» Qualitatively consistent with the global model prediction and the MD simulation.
@ T, dependence
> Dy, St, and DySt monotonously decrease with increasing T, at ~ 348 — 573 K.
» Qualitatively consistent with the global model prediction.
» T, dependence of Dy is stronger than that of St.
- Lower de-trapping energies of solute and weakly trapped D atoms (Dy).
@ I, dependence
> Dy linearly increases with increasing I';, and saturates at I, 2 0.75x10%! m2s1,
> DySt (St) only slightly increases (decreases) or both are nearly constant with increasing I'..
» Inconsistent with the global model prediction.
@ Effect of He bubbles

» Dy (St) only slightly decreases (increases).
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Ex-situ analyses of supersaturated layer will be performed using
FIB/TEM and GDOES.

PISCES
Depth (nm)
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@ Layer thickness and (relative) D amounts vs. E,, T, and T".. :
107
@ GDOES depth profiling of RAFM steel samples was done. : i
2 10
> Depth resolution: ~ 0.125 nm. 5
» D signal (Ly, at 2nd order) was successfully detected 10°
in a Cr-rich surface layer. ool
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Fig. 5. GDOES depth profile measurements of CLAM 19-05: (a) Fe, Cr, and W
in the plasma-exposed (front) surface in a semi-logarithmic scale, and (b) D in
both front and rear surfaces in a linear scale. The thick solid lines exhibit
smoothed data with a smoothing width of 5 data points, while the dotted lines

® show raw data. The depth is calculated with 50 nm s", based on the total
San Dle go sputtering time of 200 s and the measured crater depth of ~ 10 pm.
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