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Summary

• Apply UQ to the coronal average charge state problem

• Use 3 parameters to vary the ionisation rates and 3 for the recombination rates

• Get the rates either from the ITER AMNS library (for this data, based on ADAS) or 

directly from ADAS

• Explore the variance in the results and the Sobol indices which explain the variance

• Compare the variances with those arising from different ADAS data-sets


• Need a better way of parametrising the uncertainty in the atomic data

• Need better data

• Look to apply this to SOLPS runs to explore the impact of uncertainty in the 

atomic data



How to add UQ?

• Approach taken here

• Have Rate(te, ne) from, for example, ADAS

• Change this to Rate(Te*vTe, ne*vne) * vrate


• With the v’s varying around 1

• Do this for ionisation and recombination rates

• Then solve for the coronal equilibrium average charge distribution, 

as a function of these varying v’s

• We can use the same methodology if we have better ways of 

parameterising the uncertainties in the atomic data



Results for applying these v’s …

• Use (here) 

• v = [0.9,1.1] in steps of 0.01



Now use the VECMA EasyVVUQ toolkit 

• https://github.com/UCL-CCS/EasyVVUQ

• Suleimenova, Diana, Hamid Arabnejad, Wouter N. Edeling, David 

Coster, Onnie O. Luk, Jalal Lakhlili, Vytautas Jancauskas, et al. ‘Tutorial 
Applications for Verification, Validation and Uncertainty Quantification 
Using VECMA Toolkit’. Journal of Computational Science, June 2021, 
101402. https://doi.org/10.1016/j.jocs.2021.101402. [And references 
therein]


• Python package capable of running UQ “campaigns”

https://github.com/UCL-CCS/EasyVVUQ


Some details

• Here we assume an uniform distribution of the v’s in the interval [0.8, 
1.2]


vary = {

    "EI_te_vary":   cp.Uniform(0.8,   1.2),

    "EI_ne_vary":   cp.Uniform(0.8,   1.2),

    "EI_rate_vary": cp.Uniform(0.8,   1.2),

    "RC_te_vary":   cp.Uniform(0.8,   1.2),

    "RC_ne_vary":   cp.Uniform(0.8,   1.2),

    "RC_rate_vary": cp.Uniform(0.8,   1.2)}


• Use Polynomial Chaos Expansion with varying order to evaluate the 
statistical information



Results for H, ne=3e19

• Mean average charge as a 
function of Te


• With + and - 1 standard 
deviation


• And the 10 and 90 percentiles

• To understand where the 

variance is coming from, we 
need to look at the Sobol 
indices … 



Results for H, ne=3e19

• For the first Sobol

• We see that over the whole 

domain, contribution of varying 
the Te argument to the EI rate is 
the most important


• At higher temperatures, we start 
to see increasing contributions 
from the RC variation: the Te 
argument variation and the 
variation in the rate



Results for H, ne=3e19

• Similar results for the total Sobol

• We see that over the whole domain, 

contribution of varying the Te 
argument to the EI rate is the most 
important


• At higher temperatures, we start to 
see increasing contributions from 
the RC variation: the Te argument 
variation and the variation in the rate


• Also see a contribution of the Te 
varying RC contribution at lower 
temperatures



Results for H, ne=3e19

• Explanation for the difference 
can be seen from the second 
Sobols


• Largest contributions from

• RC_te_vary / EI_te_vary

• EI_te_vary / RC_te_vary



Need to check the convergence with PCE order

• Scan PCE order 1..5

• The Sobols seem to converge 

quite well, and order 3 seems to 
be a good compromise between 
accuracy and speed

• Order 3 requires 4096 

samples

• Order 5 requires 46656 

samples



Now consider the results for W

• Average charge and total Sobols: EI_te_vary dominant over most of the range except for an 
important Te range where RC_te_vary takes over …



ADAS has multiple data sets: compare UQ variation to those 
arising from the different data sets: H

• Different ADAS data-sets for H 
are very similar


• Plotting the distributions 
doesn’t tell us much more …
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ADAS has multiple data sets: compare UQ variation to those 
arising from the different data sets: W

• A lot of variation between the 
ADAS W data sets

• Much larger than the variance 

coming from our choice of 
varying coefficients


• Would be good to get 
agreement on “better” W data!


• At 1000eV the average charge 
is somewhere between 24 and 
43!



In conclusion

• Need a better prescription for how to vary the atomic physics data in order to do 
a sensitivity study

• Ideally with a few parameters that can alter the information from ADAS


• While we can do a 5th order PCE campaign for the coronal cases, we want to look 
at the impact on edge simulations

• 46656 samples took 10767.549 seconds (~0.23 seconds per case)

• SOLPS run with just H might take a few hours without drifts and a week with 

drifts for each sample

• Can do dimension adaptive analysis, though 


• In a different context 1 048 576 samples was reduced to 1245, 40 days to 6 
hours


