

R.K. JANEV MACEDONIAN ACADEMY OF SCIENCES AND ARTS, SKOPJE, R.N. MACEDONIA

1st IAEA RCM on A+M Data for Vapour Shielding in Fusion Devices, March 13-15, 2019, Vienna

Outline

- Computational Method: TC-AOCC
- Cross section results for:
- p+ Li+(1s²), Li+(1s2s), Sn (... 5p²)
- Research Team:
- Dr. Dragan Jakimovski
- Dr. Natasha Markovska

Computational method: TC-AOCC
• Two-center expansion basis: (centers A and B)

$$\Psi(\vec{r},t) = \sum_{i}^{N} a_i(t) \tilde{\phi}_i^A(\vec{r},t) + \sum_{j}^{M} b_j(t) \tilde{\phi}_j^B(\vec{r},t)$$

$$\tilde{\phi}_{i,j}(\vec{r},t) = \phi_{i,j}(\vec{r}) \xi_{ETF}(r,t;v)$$

$$\phi_{nlm}(\vec{r}) = \sum_{k} c_{nk} \chi_{klm}(\vec{r})$$

$$\{\chi_{klm}(\vec{r})\}: suitable basis (STO,GTO.,...)$$

Coupled Equations (C.E.)

$$(H - i\frac{\partial}{\partial t})\Psi(\vec{r},t) = 0$$

$$H = -\frac{1}{2}\Delta_{\vec{r}} + V_A(r_A) + V_B(r_B)$$

$$i(\dot{A} + S\dot{B}) = HA + KB$$

$$i(\dot{B} + S^*\dot{A}) = \bar{K}A + \bar{H}B$$

$$H = [H_{ii}], \ \bar{H} = [H_{jj}], \ K = [H_{ij}], \ \bar{K} = [H_{ji}]$$

Solution of C.E. and cross sections

- Classical motion of nuclei
- (straightline trajectory; IPM)
- Initial conditions (A-target, B-projectile):

CX and Exc.
$$a_i(-\infty) = \delta_{1i}, \ b_j(-\infty) = 0$$

$$\sigma_{ex,i} = 2\pi \int_0^\infty \left| a_i(+\infty) \right|^2 b db$$

$$\sigma_{cx,j} = 2\pi \int_0^\infty \left| b_j(+\infty) \right|^2 b db$$

Collision systems and processes

- State-selective (*nl*-) electron capture and excitation cross section calculations
- Completed for: p –Li+, p -Sn (with IAPCM, Beijing): p-Be+, Be3+ -Li
- In progress: p-Sn+, He2+ Li+
- Planned: He+ Sn+, He+ Li, Li+; He+ -Be+
- CX and Exc states: with $n \le 4$
- Energy range: 1- 300keV/u

Results for $p + Li + (1s^2)/Li + (1s2s)$

Model potentials:

$$V_{s,t}(r) = -\frac{2}{r} - \frac{1}{r} \left(Z_1 + Z_2 r \right) e^{-Z_3 r}$$

sin glet: $Z_1 = 0.76294$, $Z_2 = 2.140135$, $Z_3 = 5.091085$ triplet: $Z_1 = 1.20962$, $Z_2 = 1.91843$, $Z_3 = 3.70290$

Accuracy of excited state energies: 2%**Expansion basis:** all states with $n \le 7$ on both centers

Dynamics in p+ Li+(1s2s) system

In atomic picture:

Quasi-resonant energy levels (in a.u.) : Li+ (2S 1S): -0.5411; (2S 3S): -0.61100 (4s 1S): -0.1298; (4s 3S): -0.13719(4p 1P): -0.1242; (4p 3P): -0.12850 (4d 1D): -0.1251; (4d 3D): -0.1252 (4f 1F): -0.1251; (4f 3F): -0.1251 H(1s): -0.500 (*e*-back-capture) H(n=2): -0.125

Li+(1s2s^1,3S) initial states Capture to 1s, 2l and 3l states

Capture to 4l states (a) 10⁻² 4s $\sigma_{cx}~(10^{-16}~cm^2)$ 4p 4d 4f 10⁻³ 10-4 1s2s ¹S 10² 101 (b) 10⁻² 4s $\sigma_{cx} (10^{-16} \text{ cm}^2)$ 4p 4d 4f 10-4 1s2s ³S 10² 10¹

Excitation to 4l states

Cross sections for p + Sn collisions

Sn ground state:4d^10 5s^25p^2 |3P_0-2;

• Model potentials for e-Sn+: $|1S_0; |1D_2|$

$$V_{s,t}(r) = -\frac{1}{r} \left[Z_0 + (Z_1 + Z_2 r) \right] \exp(-Z_3 r)$$

sin glet: $Z_0 = 0.714$, $Z_1 = 6.454$, $Z_2 = 4.418$, $Z_3 = 0.473$ triplet: $Z_0 = 1.084$, $Z_1 = 6.4134$, $Z_2 = 5.739$, $Z_3 = 0.567$ Accuracy: better than 7%

Expansion basis sets:

• On Sn: lowest 9 states with lowest J-values;

• On H: all states with $n \le 8$

• Convergence of results: within 5%

Energy levels of lowest Sn states

singlets	Sn	triplet	Sn	n of	H(n)
		S		Η	
5 p 5 p	-0.26401	5 p 5p	-0.26988	n=1	-0.5000
5p6s	-0.09192	5p6s	-0.11055	n=2	-0.125
5p6p	-0.05015	5 p6 p	-0.06710	n=3	-0.0556
5p5d	-0.04637	5p5d	-0.06249	n=4	-0.03125
5 p 7 s	-0.02973	5 p 7s	-0.05019	n=5	-0.0200
5p5f	-0.0203	5 p 7p	-0.03107	n=6	-0.01389
5p6d	-0.01523	5p6d	-0.03071	n=7	-0.01020
5p6f	-0.01412	5p8s	-0.02876	n=8	-0.00781
5f7f	-0.01034	5p8p	-0.02217	n=9	-0.00617

Quasi-resonant Sn(nl)-H(n) energy levels

Work in progress and planned

In progress:

 $He^{2+} + Li^+, H^+ + Sn^+, He^+ + Sn$

Planned:

 $He^+ + Li^+, He^+ + Sn^+, H^+ + Ga, Ga^+$

- Cross sections and spectral lines
- Collaboration with IAPCM (Beijing)