Tin ions:

Spectroscopy and Interactions

Ronnie Hoekstra

ADVANCED RESEARCH CENTER FOR NANOLITHOGRAPHY

/ zernike institute for advanced materials

outline

introduction on lithograpy

advanced research center for nanolithography

Fundamental physics aspects of EUV generation

- (propulsion and deformation of tin droplets)
- tin ion spectroscopy for diagnostics
- energetic-ion emission and plasma-wall interactions

Moore's law

number of transistors in affordable CPU doubles every two years !!!

.. driving minituarization and innovation **MARCNL**

manufactering a repetitive process

elements of nanolithography tools

Moore's second or Rock's law

law 1:

number of transistors in *affordable* CPU doubles every two years

law 2: costs of a semiconductor chip fabrication line double every 4 years

 \rightarrow costs per transistor decrease

Samsung's 2015 DRAM plant investment 14 B\$

ARCNL facts

focus: fundamental and applied physics in the context of technologies for (nano)-lithography, primarily for the semiconductor industry

- Concept: 2013 by ASML
- *Partners:* ASML and FOM/NWO, UvA, VU
- Start: Jan. 2014
- *Financial:* M€ 7 /yr base funding; M€ 5 start up Amsterdam + Noord-Holland
- Size: Currently 75 fte (84 'faces'); growing to ~100 fte

UNIVERSITEIT VAN AMSTERDAM

- Location: Science Park, Amsterdam
- Housing: temporary office + lab buildings long-term housing now
- Facilities/support: shared with AMOLF

Ŵ

www.arcnl.nl arcnlsecretariaat@arcnl.nl

https://twitter.com/nanolithography

Provincie Noord-Hollan

Gemeente

long-term housing: Matrix VII

from artist impression to realization =>

January 2019 moved to new building restart experiments April

scientific program

SOURCE	METROLOGY	SCANNER	PROCESSES	EXTRA
EUV Plasma Processes Ronnie Hoekstra, Wim Ubachs & Oscar Versolato	EUV Generation & Imaging Stefan Witte & Kjeld Eikema	Nanolayers Joost Frenken	Nanophotochemistry Fred Brouwer	AMOLF-ARCNL Projects Coord.: Huib Bakker
'EUV Plasma Modeling' vacancy	EUV Targets Paul Planken	Contact Dynamics Steve Franklin	EUV Photoresists Sonia Castellanos	Accelerator-based EUV Ronnie Hoekstra
		Materials & Surface Science for EUVL vacancy		
HHG and EUV Science Group Peter Kraus				

INTEGRATION

Joost Frenken (ARCNL), Marjan Fretz (ARCNL) & Wim van der Zande (ASML)

research team

ARCNL EUV PP team:

Francesco Torretti (PhD) Joris Scheers (PhD) Ruben Schupp (PhD) Mart Johan Deuzeman (PhD) Subam Rai (PhD) Bo Liu (PhD) Zoi Bouza (PhD) Lucas Poirier (PhD) Lars Behnke (PhD) (2x PhD) Alex Bayerle (postdoc) Dmitry Kurilovich (postdoc)(postdoc) John Sheil (postdoc/tenure track) Laurens van Buuren (technician) Wim Ubachs (group leader) Oscar Versolato (group leader) Ronnie Hoekstra (group leader)

ARCNL EUV G&I team: Tiago de Faria Pinto (PhD) Randy Meijer (PhD) Stefan Witte (group leader)

ASML team Harry Kreuwel Andrei Yakunin Konstantin Tsigutkin Alexandr Bratchenia Adam Lassise Wim van der 7ande Jayson Stewart Andrew Laforge Alex Schafgans Rob Rafac Igor Fomenkov ... a.o.

Collaborators:

.

J.R. Crespo López-Urrutia et al. (MPIK) H. Gelderblom (University of Twente) A. Klein (University of Twente) S. Reijers (University of Twente) A. Ryabtsev (ISAN) M. Basko (KIAM, ISAN) D. Kim (ISAN) A. Borschevsky (University of Groningen) J. Berengut (UNSW Australia) E. Kahl (UNSW Australia) M. Bayraktar (University of Twente) F. Bijkerk (University of Twente) H. Scott (LLNL): J. Colgan (LANL) P. Mora (CNRS Paris) L. Mendez (UAM Madrid) I. Rabadan (UAM Madrid)

Provincie Noord-Holland

laser produced plasma for EUV sources **WARCNL**

why tin? Sn ions (7-14+) all radiate around 13.5 nm

why 13.5 nm? EUV optics - MoSi mirrors

the plasma landscape

monitoring EUV generating plasma

Just do it, buy spectrometers and monitor the spectrum. But..

- most transitions in low-, medium charged tin ions (q<20+) are unknown.
- cross section / reaction rates for excitation are totally unknown.
- the dependence on the "environment" is unknown.

•

fundamental atomic data is called for!

normalized, relative line intensity

line intensities

SnIV / Sn³⁺

ARCNL

lines

Sn³⁺ [Ag like] quasi-one-electron system [Kr]4d¹⁰5s

most simple tin ion one electron outside a closed 4d¹⁰ shell

existing information: NIST database: Moore 1958 ISAN EUV spectroscopy: Ryabtsev et al, 2006

4f²F term most studied by theory inverted, narrow fine structure Ag₁, Cd₁₁, In₁₁₁, Sn₁v,

Sbv, Tevi, Ivii, Xeviii [ground levels: $j = l + \frac{1}{2}$ and $j = l - \frac{1}{2}$]

of the **55** SnIV lines observed only **20** can be linked to the known levels

line identification

level predictions:

- COWAN code (Ryabtsev)
- FSCC Fock Space CoupledCluster (Borschevsky)

"issue": High-resolution in the optical

uncertainty	$\Delta E \text{ cm}^{-1}$	Δλ nm
0.1%	~250	~5

Quantum defect method (Edlen (1964)): binding energy w.r.t. ionization level

$$E_{nl} = -R \frac{Z^2}{(n^*)^2} = -R \frac{Z^2}{(n-\delta_l)^2}$$

Taylor expansion:

$$\delta_l = a \left(\frac{1}{(n^*)^2} \right) + b \left(\frac{1}{(n^*)^2} \right)^2 + \cdots.$$

Quantum defect scaling

Sn³⁺: [Kr] $4d^{10}nl$ core is d^{10} $l_{core} = "d"$

 $l \leq l_{core}$

0.00

0.05

0.10

0.15

1/n*2

0.20

 $l > l_{core}$

anomalous 5d fine structure

5d ²D_J fine structure	ΔE_{FS} [cm ⁻¹]
NIST database	106
RMBPT*	745
this work	
Experiment	105
FSCC	735
(FSCC)+ MBPT – CI	120

* RMBPT: Safronova *et al,* PRA **68**, 062505 (2003)

mainly shift of 5d ${}^{2}D_{5/2}$ due to configuration interaction with 4d ${}^{9}5s^{2}\,{}^{2}D_{5/2}$ ~600 cm⁻¹

$$\Psi_{5d} = a\phi_{5d} + b\phi_{4d^95s^2}$$

MARCNL

the inverted fine structure of nf ²F

4f ² F _J	ΔE_{FS} [cm ⁻¹]		
NIST database	-61		-
RMBPT*	-74	30 - 8 - 8 -	8 _
RPTMP [#]	-60		7
MCDHF ^{\$}	-71	6	
ARCNL			
experiment	-60		\equiv 1
FSCC	-62		
MBPT	-62		
5f ² F _J	$\Delta E_{FS} [cm^{-1}]$		
RMBPT*	-44	sugy	
RPTMP [#]	-22	ш	-
ARCNL		20 - = 6	_
experiment	-308		_
FSCC	-39		-
(FSCC)+ MBPT+CI	-412		
*RMBPT: Safronova <i>et al,</i> PRA	68 , 062505 (2003)		-
* RPTMP: Ivanova, ANDT, 97, 1 ^{\$} MCDHF: Grumer <i>et al,</i> PRA 8	(2011) 9, 062511 (2014)	15ns np nd nf ng nh ni	

EUV emisssion

Wavelength (nm)

atomic origins of EUV light

Transition wavelength (nm)

detailed example: Sn¹⁰⁺ (SnXI)

ARCNL

In-EBIT spectroscopy

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

EBIT group: J. Crespo López-Urrutia H. Bekker S. Dobrodey A. Windberger

electron impact excitation of trapped Sn ions in charge states 7 - 20+

theory

ISAN Troitsk A. Ryabtsev

School of Chemistry E. Eliav and U. Kaldor

Van Swinderen Institute A. Borschevsky

School of Physics J. Berengut and E. Kahl

charge state identification

A. Windberger et al., Phys. Rev. A 94, 012506 (2016); F. Torretti et al, Phys. Rev. A 95, 042503 (2017)

the tin serendipidity

"forbidden" transitions

ARCNL

A. Windberger et al., Phys. Rev. A 94, 012506 (2016); F. Torretti et al, Phys. Rev. A 95, 042503 (2017)

EUV emisssion

Wavelength (nm)

F. Torretti et al, J. Phys. B 51, 045005 (2018)

energetic ion ejection

 10^{2}

10

10

 10^{-2}

 10^{-3}

10-

SL

Charge yield (μ C keV $^{-1}$

energetic tin "bullets" damage plasma facing material pragmatic solution: hydrogen stopping gas Open Questions:

Ion energy (eV)

- what are the actual damage thresholds?
- what is the charge state distribution?
- what is the ionic-energy spectrum?
- what do the ions do to H₂ gas and vice versa?
-

lon energy (eV)

how are the ions exactly generated?

ion detectors at ARCNL's LPP source

Sn Ion detectors

Open Faraday Cups	current measurement	
Retarding Field FC	energy distribution from ToF	
	no charge state resolution	
	current measurement	
	energy distribution from ToF charge state information from retarding fields charge state resolution	
	grids in ion path	
Electrostatic Analyser	direct energy measurement (E/q) full charge state resolution via ToF	
	dynamic range - space charge effects ion detection efficiency	
	scan energy	
Thomson Parabola	simultaneous energy and charge state measurement	
	absolute ion detection efficiencies ion trajectories	

MARCNL

detection of tin ions

comparison FC and ESA

1 keV Sn ion charge state distributions

 $\frac{dN_q}{dx} = \sigma_{q+1} n_{H_2} N_{q+1} - \sigma_q n_{H_2} N_q$

overbarrier estimate of CX cross sections

Luis Mendez and Ismanuel Rabadan

1 keV Sn ion charge state distributions

zernike institute for advanced materials

energy, mass and charge state selected Sn^{q+} ion beam facility with a full suite of auxiliary analysis equipment

type of interactions

typical spectra 14 keV Sn²⁺ - Mo

💐 🔍 🔊 ARCNL

14 keV Sn²⁺ - Mo: SRIM vs experiment

👹 🔍 ARCNL

original experiment: 14 keV Sn ²⁺ - Mo		
incoming charge state	Sn ^{1+ - 4+}	as 14 keV Sn ²⁺
energy	5 – 30 keV	as 14 keV Sn ²⁺
ion species	He ¹⁺ , Ne ¹⁺	no difference between exp. and SRIM
	Xe ^{1+ - 2+}	as 14 keV Sn ²⁺
	Kr ²⁺	larger difference than 14 keV Sn ²⁺
outgoing charge state	neutrals	being tested for Ru ToF system and beam chopper installed
target	Ru	larger difference than 14 keV Sn ²⁺

first data 14 keV Sn²⁺ - Ru

scattering potentials

next step: SRIM \rightarrow SDTrimSP-2D

conclusions

"ARCNL's" tin ion spectroscopy and interactions program

- EUV source plasma conditions and densities not to dissimilar from tokamaks
- Spectroscopy:
 - well underway
 - strong collaboration with theory (structure)/ opacity investigations starting
 - experiments on EUV source plasma and external facilities
- ZERNIKELEIF facility for energy, mass, and charge state selected beams of Sn ions operational
- Interactions
 - First scattering experiments on Mo and Ru surfaces hint at issues with SRIM
 - Set-up for CX in H2 is being commissioned