Recent CCC progress in atomic and molecular collision theory

I. Abdurakhmanov, J. Bailey, A. Bray*, I. Bray, D. Fursa, A. Kadyrov, C. Rawlins, J. Savage, and M. Zammit[†]

Curtin University, Perth, Western Australia *Research School of Physics and Engineering, ANU †Theoretical Division, Los Alamos National Laboratory, USA

Vapour Shielding CRP, IAEA, Vienna, Mar., 2019

Outline

Introduction

- Convergent close-coupling theory
 - target structure and scattering
 - new approach to solving CCC equations
 - internal consistency
- Recent applications of CCC
 - antihydrogen formation
 - positron and electron scattering on molecular hydrogen
 - heavy projectiles

Motivation Introduction

- The primary motivation is to provide <u>accurate</u> atomic and molecular collision data for science and industry
 - Astrophysics
 - Fusion research
 - Lighting industry
 - Neutral antimatter formation
 - Medical: cancer imaging and therapy
- Provide a rigorous foundation for collision theory with long-ranged (Coulomb) potentials.

Motivation Introduction

- The primary motivation is to provide <u>accurate</u> atomic and molecular collision data for science and industry
 - Astrophysics
 - Fusion research
 - Lighting industry
 - Neutral antimatter formation
 - Medical: cancer imaging and therapy
- Provide a rigorous foundation for collision theory with long-ranged (Coulomb) potentials.

Collisions between particles on the atomc scale are difficult to calculate:

- Governed by the Laws of Quantum Mechanics
- Charged particles interact at large distances
- Countably infinite discrete spectrum
- Uncountably infinite target continuum
- Can be multicentred (charge exchange, Ps-formation)

History: computational

- Prior to the 1990s theory and experiment generally did not agree for:
 - electron-hydrogen excitation or ionization,
 - electron-helium excitation or (single) ionization,
 - single or double photoionization of helium.
- The convergent close-coupling (CCC) theory for electron, positron, photon, (anti)proton collisions with atoms or molecules is applicable at all energies for the major excitation and ionization processes.

History: computational

- Prior to the 1990s theory and experiment generally did not agree for:
 - electron-hydrogen excitation or ionization,
 - electron-helium excitation or (single) ionization,
 - single or double photoionization of helium.
- The convergent close-coupling (CCC) theory for electron, positron, photon, (anti)proton collisions with atoms or molecules is applicable at all energies for the major excitation and ionization processes.

History: formal theory Introduction

- Prior to 2008, no satisfactory mathematical formulation in the case of long-ranged (Coulomb) potentials for positive-energy scattering in
 - Two-body problems,
 - Three-body problems.
- Surface integral approach to scattering theory is valid for short- and long-ranged potentials:
 - Kadyrov et al. Phys. Rev. Lett., 101, 230405 (2008),
 - Kadyrov et al. Annals of Physics, 324, 1516 (2009),
 - Bray et al. Physics Reports, 520, 135 (2012).

History: formal theory Introduction

- Prior to 2008, no satisfactory mathematical formulation in the case of long-ranged (Coulomb) potentials for positive-energy scattering in
 - Two-body problems,
 - Three-body problems.
- Surface integral approach to scattering theory is valid for short- and long-ranged potentials:
 - Kadyrov et al. Phys. Rev. Lett., 101, 230405 (2008),
 - Kadyrov et al. Annals of Physics, 324, 1516 (2009),
 - Bray et al. Physics Reports, 520, 135 (2012).

target structure and scattering new approach to solving CCC equations internal consistency

Convergent close-coupling theory target structure

For complete Laguerre basis ξ^(λ)_{nl}(r), target states:
● "one-electron" (H, Ps, Li,...,Cs, H₂⁺)

$$\phi_{nl}^{(\lambda)}(r) = \sum_{n'=1}^{N_l} C_{nl}^{n'} \xi_{n'l}^{(\lambda)}(r),$$

- "two-electron" (He, Be,...,Hg, Ne, ... Xe, H₂, H₂O) $\phi_{nls}^{(\lambda)}(r_1, r_2) = \sum_{n',n''} C_{nls}^{n'n''} \xi_{n'l'}^{(\lambda)}(r_1) \xi_{n''l''}^{(\lambda)}(r_2),$
- Diagonalise the target (FCHF) Hamiltonian

$$\langle \phi_f^{(\lambda)} | \mathbf{H}_{\mathrm{T}} | \phi_i^{(\lambda)} \rangle = \varepsilon_f^{(\lambda)} \delta_{\mathrm{fi}}.$$

urtin Universit

target structure and scattering new approach to solving CCC equations internal consistency

Convergent close-coupling theory target structure

For complete Laguerre basis ξ^(λ)_{nl}(r), target states:
● "one-electron" (H, Ps, Li,...,Cs, H₂⁺)

$$\phi_{nl}^{(\lambda)}(\mathbf{r}) = \sum_{n'=1}^{N_l} C_{nl}^{n'} \xi_{n'l}^{(\lambda)}(\mathbf{r}),$$

• "two-electron" (He, Be,...,Hg, Ne, ... Xe, H₂, H₂O) $\phi_{nls}^{(\lambda)}(r_1, r_2) = \sum_{n',n''} C_{nls}^{n'n''} \xi_{n'l'}^{(\lambda)}(r_1) \xi_{n''l''}^{(\lambda)}(r_2),$

Diagonalise the target (FCHF) Hamiltonian

 $\langle \phi_f^{(\lambda)} | \mathbf{H}_{\mathrm{T}} | \phi_i^{(\lambda)} \rangle = \varepsilon_f^{(\lambda)} \delta_{\mathrm{fi}}.$

target structure and scattering new approach to solving CCC equations internal consistency

Convergent close-coupling theory target structure

For complete Laguerre basis ξ^(λ)_{nl}(r), target states:
● "one-electron" (H, Ps, Li,...,Cs, H₂⁺)

$$\phi_{nl}^{(\lambda)}(\mathbf{r}) = \sum_{n'=1}^{N_l} C_{nl}^{n'} \xi_{n'l}^{(\lambda)}(\mathbf{r}),$$

• "two-electron" (He, Be,...,Hg, Ne, ... Xe, H₂, H₂O) $\phi_{-1}^{(\lambda)}(r_1, r_2) = \sum C_{-12}^{n'n''} \xi_{-12}^{(\lambda)}(r_1) \xi_{-12}^{(\lambda)}(r_2).$

$$\phi_{nls}^{(r)}(r_1, r_2) = \sum_{n', n''} \mathcal{C}_{nls}^{(n)} \xi_{n'l'}^{(r)}(r_1) \xi_{n''l''}^{(r)}(r_2),$$

Diagonalise the target (FCHF) Hamiltonian

$$\langle \phi_f^{(\lambda)} | \mathcal{H}_{\mathrm{T}} | \phi_i^{(\lambda)}
angle = arepsilon_f^{(\lambda)} \delta_{fi}.$$

target structure and scattering new approach to solving CCC equations internal consistency

• e^+ -H energies for $N_{\rm H}^\ell = N_{\rm Ps}^\ell = 12 - \ell$, for $\ell \leq 3$

target structure and scattering new approach to solving CCC equations internal consistency

two-center positron scattering

Positron-target wavefunction is expanded as

$$|\Psi_{i}^{(+)}\rangle \approx \sum_{n=1}^{N_{\rm T}} |\phi_{n}^{\rm T} \boldsymbol{F}_{ni}^{\rm T}\rangle + \sum_{n=1}^{N_{\rm Ps}} |\phi_{n}^{\rm Ps} \boldsymbol{F}_{ni}^{\rm Ps}\rangle.$$
(1)

• Solve for $T_{fi} \equiv \langle \boldsymbol{k}_f \phi_f | \boldsymbol{V} | \Psi_i^{(+)} \rangle$ at $\boldsymbol{E} = \varepsilon_i + \epsilon_{k_i}$,

$$\langle \boldsymbol{k}_{f} \phi_{f} | \boldsymbol{T} | \phi_{i} \boldsymbol{k}_{i} \rangle = \langle \boldsymbol{k}_{f} \phi_{f} | \boldsymbol{V} | \phi_{i} \boldsymbol{k}_{i} \rangle$$

$$+ \sum_{n=1}^{N_{T}+N_{Ps}} \int \boldsymbol{d}^{3} \boldsymbol{k} \frac{\langle \boldsymbol{k}_{f} \phi_{f} | \boldsymbol{V} | \phi_{n} \boldsymbol{k} \rangle \langle \boldsymbol{k} \phi_{n} | \boldsymbol{T} | \phi_{i} \boldsymbol{k}_{i} \rangle}{E + i0 - \varepsilon_{n} - k^{2}/2}.$$

ill-conditioned, but unitary (no double counting)

Igor Bray <I.Bray@curtin.edu.au> Recent CCC progress in atomic and molecular collision theory

Curtin University

target structure and scattering new approach to solving CCC equations internal consistency

two-center positron scattering

Positron-target wavefunction is expanded as

$$|\Psi_{i}^{(+)}\rangle \approx \sum_{n=1}^{N_{\rm T}} |\phi_{n}^{\rm T} \mathcal{F}_{ni}^{\rm T}\rangle + \sum_{n=1}^{N_{\rm Ps}} |\phi_{n}^{\rm Ps} \mathcal{F}_{ni}^{\rm Ps}\rangle.$$
(1)

• Solve for $T_{fi} \equiv \langle \boldsymbol{k}_f \phi_f | \boldsymbol{V} | \Psi_i^{(+)} \rangle$ at $\boldsymbol{E} = \varepsilon_i + \epsilon_{k_i}$,

$$\langle \boldsymbol{k}_{f}\phi_{f}|T|\phi_{i}\boldsymbol{k}_{i}\rangle = \langle \boldsymbol{k}_{f}\phi_{f}|V|\phi_{i}\boldsymbol{k}_{i}\rangle$$

$$+ \sum_{n=1}^{N_{\mathrm{T}}+N_{\mathrm{Ps}}} \int d^{3}k \frac{\langle \boldsymbol{k}_{f}\phi_{f}|V|\phi_{n}\boldsymbol{k}\rangle\langle \boldsymbol{k}\phi_{n}|T|\phi_{i}\boldsymbol{k}_{i}\rangle}{E+i0-\varepsilon_{n}-k^{2}/2}.$$
(2)

ill-conditioned, but unitary (no double counting).

Curtin Universit

target structure and scattering new approach to solving CCC equations internal consistency

two-center positron scattering

Positron-target wavefunction is expanded as

$$|\Psi_{i}^{(+)}\rangle \approx \sum_{n=1}^{N_{\rm T}} |\phi_{n}^{\rm T} \mathcal{F}_{ni}^{\rm T}\rangle + \sum_{n=1}^{N_{\rm Ps}} |\phi_{n}^{\rm Ps} \mathcal{F}_{ni}^{\rm Ps}\rangle.$$
(1)

• Solve for $T_{fi} \equiv \langle \boldsymbol{k}_f \phi_f | \boldsymbol{V} | \Psi_i^{(+)} \rangle$ at $\boldsymbol{E} = \varepsilon_i + \epsilon_{k_i}$,

$$\langle \mathbf{k}_{f} \phi_{f} | T | \phi_{i} \mathbf{k}_{i} \rangle = \langle \mathbf{k}_{f} \phi_{f} | \mathbf{V} | \phi_{i} \mathbf{k}_{i} \rangle$$

$$+ \sum_{n=1}^{N_{\mathrm{T}} + N_{\mathrm{Ps}}} \int d^{3} \mathbf{k} \frac{\langle \mathbf{k}_{f} \phi_{f} | \mathbf{V} | \phi_{n} \mathbf{k} \rangle \langle \mathbf{k} \phi_{n} | T | \phi_{i} \mathbf{k}_{i} \rangle}{E + i0 - \varepsilon_{n} - k^{2}/2}.$$

$$(2)$$

• ill-conditioned, but unitary (no double counting).

Curtin University

target structure and scattering new approach to solving CCC equations internal consistency

new approach to solving CCC equations

Use complete sets of states to isolate

$$G_n^L(r',r'') = \sum dk \frac{f_L(kr')f_L(kr'')}{E+i0-\epsilon_n-\varepsilon_k}$$

= $-\frac{\pi}{k_n}f_L(k_nr_<)(g_L(k_nr_>)+if_L(k_nr_>)).$ (3)

Eq. (2) becomes [A. Bray et al. CPC 212 55 (2017)]

$$\langle \boldsymbol{k}_{f} \phi_{f} | \boldsymbol{T} | \phi_{i} \boldsymbol{k}_{i} \rangle = \langle \boldsymbol{k}_{f} \phi_{f} | \boldsymbol{V} | \phi_{i} \boldsymbol{k}_{i} \rangle$$

$$+ \sum_{n=1}^{N_{\mathrm{T}}+N_{\mathrm{Ps}}} \int \boldsymbol{d}^{3} \boldsymbol{k} \langle \boldsymbol{k}_{f} \phi_{f} | \boldsymbol{V}' | \phi_{n} \boldsymbol{k} \rangle \langle \boldsymbol{k} \phi_{n} | \boldsymbol{T} | \phi_{i} \boldsymbol{k}_{i} \rangle.$$

$$(4)$$

• Works for $k_f = 0$ for neutral and ionic targets.

Igor Bray <I.Bray@curtin.edu.au> Recent CCC progress in atomic and molecular collision theory

Curtin Universit

target structure and scattering new approach to solving CCC equations internal consistency

new approach to solving CCC equations

Use complete sets of states to isolate

$$G_n^L(r',r'') = \sum dk \frac{f_L(kr')f_L(kr'')}{E+i0-\epsilon_n-\varepsilon_k}$$

= $-\frac{\pi}{k_n}f_L(k_nr_<)(g_L(k_nr_>)+if_L(k_nr_>)).$ (3)

Eq. (2) becomes [A. Bray et al. CPC 212 55 (2017)]

$$\langle \boldsymbol{k}_{f} \phi_{f} | \boldsymbol{T} | \phi_{i} \boldsymbol{k}_{i} \rangle = \langle \boldsymbol{k}_{f} \phi_{f} | \boldsymbol{V} | \phi_{i} \boldsymbol{k}_{i} \rangle$$

$$+ \sum_{n=1}^{N_{\mathrm{T}} + N_{\mathrm{Ps}}} \int \boldsymbol{d}^{3} \boldsymbol{k} \langle \boldsymbol{k}_{f} \phi_{f} | \boldsymbol{V}' | \phi_{n} \boldsymbol{k} \rangle \langle \boldsymbol{k} \phi_{n} | \boldsymbol{T} | \phi_{i} \boldsymbol{k}_{i} \rangle.$$

$$(4)$$

• Works for $k_f = 0$ for neutral and ionic targets.

Curtin Universit

target structure and scattering new approach to solving CCC equations internal consistency

new approach to solving CCC equations

Use complete sets of states to isolate

$$G_n^L(r',r'') = \sum dk \frac{f_L(kr')f_L(kr'')}{E+i0-\epsilon_n-\varepsilon_k}$$

= $-\frac{\pi}{k_n}f_L(k_nr_<)(g_L(k_nr_>)+if_L(k_nr_>)).$ (3)

Eq. (2) becomes [A. Bray et al. CPC 212 55 (2017)]

$$\langle \boldsymbol{k}_{f} \phi_{f} | T | \phi_{i} \boldsymbol{k}_{i} \rangle = \langle \boldsymbol{k}_{f} \phi_{f} | \boldsymbol{V} | \phi_{i} \boldsymbol{k}_{i} \rangle$$

$$+ \sum_{n=1}^{N_{T}+N_{Ps}} \int \boldsymbol{d}^{3} \boldsymbol{k} \langle \boldsymbol{k}_{f} \phi_{f} | \boldsymbol{V}' | \phi_{n} \boldsymbol{k} \rangle \langle \boldsymbol{k} \phi_{n} | T | \phi_{i} \boldsymbol{k}_{i} \rangle.$$

$$(4)$$

• Works for $k_f = 0$ for neutral and ionic targets.

Curtin University

target structure and scattering new approach to solving CCC equations internal consistency

e-He⁺ 2s and 2p excitation

Igor Bray <I.Bray@curtin.edu.au>

Recent CCC progress in atomic and molecular collision theory

target structure and scattering new approach to solving CCC equations internal consistency

Helium single and double photoionisation

Introduction Recent applications of CCC internal consistency

internal consistency

In positron scattering there are two centres:

- target: discrete and continuous spectrum positronium: discrete and continuous spectrum

target structure and scattering new approach to solving CCC equations internal consistency

internal consistency

In positron scattering there are two centres:

- target: discrete and continuous spectrum
- positronium: discrete and continuous spectrum
- One-centre complete expansion:
 - Ps-formation is within ionization $\sigma_{ion}^{(1)}$: e-loss
 - boundary condition problem in the extended Ore gap
- Two-centre complete expansion:
 - explicit Ps-formation $\sigma_{Ps}^{(2)}$ and breakup $\sigma_{brk}^{(2)}$: e-loss
 - ill-conditioned, but no double counting
- Internal consistency:
 - above ionization threshold: $\sigma_{ion}^{(1)} = \sigma_{Ps}^{(2)} + \sigma_{brk}^{(2)}$
 - below Ps-formation threshold: $\sigma_{ii}^{(1)} = \sigma_{ii}^{(2)}$

target structure and scattering new approach to solving CCC equations internal consistency

internal consistency

In positron scattering there are two centres:

- target: discrete and continuous spectrum
- positronium: discrete and continuous spectrum
- One-centre complete expansion:
 - Ps-formation is within ionization $\sigma_{ion}^{(1)}$: e-loss
 - boundary condition problem in the extended Ore gap
- Two-centre complete expansion:
 - explicit Ps-formation $\sigma_{Ps}^{(2)}$ and breakup $\sigma_{brk}^{(2)}$: e-loss
 - ill-conditioned, but no double counting
- Internal consistency:
 - above ionization threshold: $\sigma_{ion}^{(1)} = \sigma_{Ps}^{(2)} + \sigma_{brk}^{(2)}$
 - below Ps-formation threshold: $\sigma_{ii}^{(1)} = \sigma_{ii}^{(1)}$

target structure and scattering new approach to solving CCC equations internal consistency

internal consistency

• In positron scattering there are two centres:

- target: discrete and continuous spectrum
- positronium: discrete and continuous spectrum
- One-centre complete expansion:
 - Ps-formation is within ionization $\sigma_{ion}^{(1)}$: e-loss
 - boundary condition problem in the extended Ore gap
- Two-centre complete expansion:
 - explicit Ps-formation $\sigma_{Ps}^{(2)}$ and breakup $\sigma_{brk}^{(2)}$: e-loss
 - ill-conditioned, but no double counting
- Internal consistency:
 - above ionization threshold: $\sigma_{ion}^{(1)} = \sigma_{Ps}^{(2)} + \sigma_{brk}^{(2)}$
 - below Ps-formation threshold: $\sigma_{ii}^{(1)} = \sigma_{ii}^{(2)}$

Introduction target structure and scattering new approach to solving CCC equations internal consistency

one- and two-centre positron-hydrogen calculations

Introduction target structure and scattering new approach to solving CCC equations Recent applications of CCC internal consistency

• e^+ -H(1s) calculated with CCC($N_{l_{max}}^{H}, N_{l_{max}}^{P_s}$) for L = 0

[Bailey et al. Phys. Rev. A 91, 012712 (2015)]

antihydrogen formation

positron and electron scattering on molecular hydrogen heavy projectiles

antihydrogen formation

[Kadyrov et al. Phys. Rev. Lett. 114, 183201 (2015)]

antihydrogen formation

positron and electron scattering on molecular hydrogen heavy projectiles

antihydrogen formation

[Kadyrov et al. Nature Communications 8, 1544 (2017)] Curto University

antihydrogen formation

heavy projectiles

antihydrogen formation and elastic scattering

[Fabrikant et al. Phys. Rev. A 94, 012701 (2016)]

antihydrogen formation

heavy projectiles

antihydrogen formation and elastic scattering

[Fabrikant et al. Phys. Rev. A 94, 012701 (2016)]

antihydrogen formation positron and electron scattering on molecular hydrogen heavy projectiles

positron scattering on molecular hydrogen

e⁺-H₂ collisions: total cross section

Igor Bray <I.Bray@curtin.edu.au>

Recent CCC progress in atomic and molecular collision theory

antihydrogen formation positron and electron scattering on molecular hydrogen heavy projectiles

positron scattering on molecular hydrogen

e⁺-H₂ collisions: internal consistency

[Utamuratov et al. Phys. Rev. A 92, 032707 (2015)]

antihydrogen formation positron and electron scattering on molecular hydrogen heavy projectiles

positron scattering on molecular hydrogen

[Utamuratov et al. Phys. Rev. A 92, 032707 (2015)] Control University

antihydrogen formation positron and electron scattering on molecular hydrogen heavy projectiles

electron scattering on molecular hydrogen

• e⁻-H₂ collisions: total cross section

Igor Bray <I.Bray@curtin.edu.au>

Recent CCC progress in atomic and molecular collision theory

Curtin Universit

antihydrogen formation positron and electron scattering on molecular hydrogen heavy projectiles

electron scattering on molecular hydrogen

• e⁻-H₂ collisions: total ionization

Curtin University

Igor Bray <I.Bray@curtin.edu.au>

Recent CCC progress in atomic and molecular collision theory

antihydrogen formation positron and electron scattering on molecular hydrogen heavy projectiles

electron scattering on molecular hydrogen

• e^--H_2 collisions: $b^3\Sigma_u^+$ excitation

[Zawadski et al. PRA 98, 050702R (2018)]

antihydrogen formation positron and electron scattering on molecular hydrogen heavy projectiles

proton scattering on hydrogen

• p⁺-H collisions: internal consistency

Igor Bray <I.Bray@curtin.edu.au>

Recent CCC progress in atomic and molecular collision theory

Curtin Universitu

antihydrogen formation positron and electron scattering on molecular hydrogen heavy projectiles

proton scattering on hydrogen

p⁺-H collisions: capture and ionization

[Abdurakhmanov et al. J. Phys. B 49, 115203 (2016)]

antihydrogen formation positron and electron scattering on molecular hydrogen heavy projectiles

antiproton scattering on molecular hydrogen

Igor Bray <I.Bray@curtin.edu.au>

Recent CCC progress in atomic and molecular collision theory

Curtin Universit

antihydrogen formation positron and electron scattering on molecular hydrogen heavy projectiles

antiproton scattering on molecular hydrogen

[Abdurakhmanov et al. PRL 111, 173201 (2013)]

Igor Bray <I.Bray@curtin.edu.au>

Recent CCC progress in atomic and molecular collision theory

Curtin Universit

antihydrogen formation positron and electron scattering on molecular hydrogen heavy projectiles

Concluding remarks

- CCC method has been implemented for scattering of electrons, positrons, photons, protons and antiprotons on quasi one- and two-electron targets, as well as inert gases.
- Two-center problems have self-consistency checks

To-do list

- Ps-H, Ps-He⁺, Ps-H⁺₂
- Ps-Ne⁺, and other inert gas ions
- H-He⁺, H-H₂⁺, H-Ne⁺, and other inert gas ions
- X₂, H₂O and other molecular targets

antihydrogen formation positron and electron scattering on molecular hydrogen heavy projectiles

Concluding remarks

- CCC method has been implemented for scattering of electrons, positrons, photons, protons and antiprotons on quasi one- and two-electron targets, as well as inert gases.
- Two-center problems have self-consistency checks

To-do list

- Ps-H, Ps-He⁺, Ps-H₂⁺
- Ps-Ne⁺, and other inert gas ions
- H-He⁺, H-H₂⁺, H-Ne⁺, and other inert gas ions
- X₂, H₂O and other molecular targets

