

Curtin University

Proton scattering from excited states of atomic hydrogen + some other processes

A S Kadyrov and I B Abdurakhmanov, Sh U Alladustov, J J Bailey, I Bray

Curtin University, Australia

2nd RCM, IAEA, Vienna 2019

Outline

- 1 Single-centre semiclassical close-coupling (CC) approach
- 2 Difficulties associated with two-centre semiclassical CC approach
- Two-centre semiclassical convergent close-coupling (CCC) approach
- 4 Total and various differential cross sections for ionisation and electron capture in following collisions
 - p + H(n=2)
 - C⁶⁺ + H(1s)
 - p + He(1s²)
 - H(1s) + H(1s)

1-centre semiclassical CC approach

A lab frame: the origin at the target, *z*-axis $\parallel \vec{v}$ and *x*-axis $\parallel \vec{b}$ Projectile position $\vec{R}(t) = \vec{b} + \vec{Z} = \vec{b} + \vec{v}t$

The w.f. is a solution to SC TDSE

$$i \frac{\partial \Psi(\vec{r},t)}{\partial t} = (H_T + V_P)\Psi(\vec{r},t)$$

Expand Ψ in terms of pseudostates of H_T

$$\Psi(\vec{r},t) = \sum_{\alpha} a_{\alpha}(t) \exp(-i\varepsilon_{\alpha}t)\phi_{\alpha}(\vec{r})$$

1-centre semiclassical approach

Then we get

$$i\dot{a}_{\alpha}(t) = \sum_{\beta} \exp[i(\varepsilon_{\alpha} - \varepsilon_{\beta})t]a_{\beta}(t)D_{\alpha\beta}$$

$$D_{\alpha\beta} = \left\langle \phi_{\alpha} \left| -\frac{1}{R(t)} + \sum_{i} \frac{1}{|\vec{R}(t) - \vec{r}_{i}|} \right| \phi_{\beta} \right\rangle$$

In matrix form $i\dot{a} = Da$ Pseudostates $\langle \phi_{\beta} | H_T | \phi_{\alpha} \rangle = \delta_{\beta\alpha} \varepsilon_{\alpha}$

Conventional 2-centre CC approach

In 1-centre case we used

$$\Psi(\vec{r}_A,t) = \sum_{\alpha} a_{\alpha}(t) \phi_{\alpha}^A(\vec{r}_A) e^{-i\varepsilon_{\alpha}t}$$

It is a solution to TDSE

$$i \frac{\partial \Psi(\vec{r}_A, t)}{\partial t} = (H_A + V_B) \Psi(\vec{r}_A, t)$$

- Now we take into account electron capture
- We need a 2-centre expansion

Conventional 2-centre CC approach

2-centre expansion

$$\Psi(\vec{r},t) = \sum_{\alpha} a_{\alpha}(t)\phi_{\alpha}^{A}(\vec{r}_{A})e^{-i\varepsilon_{\alpha}t} + \sum_{\beta} b_{\beta}(t)\phi_{\beta}^{B}(\vec{r}_{B})e^{-i\varepsilon_{\beta}t}$$
There are 2 problems
We write TDSE in c.m. frame

$$i\frac{\partial\Psi(\vec{r},t)}{\partial t} = (T_{\vec{r}} + V)\Psi(\vec{r},t)$$

$$\lim_{proj. (B)} \overline{R}$$

$$\lim_{proj. (B)} \overline{R}$$

However, this does not solve the problem.

The wave function does not satisfy boundary conditions.

Electronic translational factors

Bates and McCarroll (1958): electronic translational factors (ETF)

2-centre expansion safisfying the boundary conditions

$$\Psi(\vec{r},t) = \sum_{\alpha} a_{\alpha}(t)\phi_{\alpha}^{A}(\vec{r}_{A})e^{-i\varepsilon_{\alpha}t + i\pi_{\alpha}^{A}(\vec{r},t) - iv^{2}t/8} + \sum_{\beta} b_{\beta}(t)\phi_{\beta}^{B}(\vec{r}_{B})e^{-i\varepsilon_{\beta}t + i\pi_{\beta}^{B}(\vec{r},t) - iv^{2}t/8}$$

where $\pi_{\alpha}^{A}(\vec{r},t)$ and $\pi_{\beta}^{B}(\vec{r},t)$ are arbitrary functions. The only condition is that when $|t| \rightarrow \infty$

$$\pi^A_{\alpha}(\vec{r},t) \rightarrow -\frac{1}{2}\vec{v}\vec{r} \quad \text{and} \quad \pi^B_{\beta}(\vec{r},t) \rightarrow \frac{1}{2}\vec{v}\vec{r}$$

Science of ETFs

- □ There is a non-uniqueness problem
- Choice of ETFs and their optimisation (using variational techniques) become elaborate science
- Types of ETFs:
 - common
 - state-dependent
 - plane-wave
 - non-PW etc
- □ Many papers and reviews have been published
- Bates and McCarroll (1958) solution was incomplete
- □ We believe there is a better solution

2 problems with the standard approach

- Bates and McCarroll (1958) solution was incomplete
- There is no need for an *ad-hoc* solution using as ETF
- The reason for the problem was 2-fold
- 1st problem appears in the attempt to represent the 2nd centre w.f. in the same form as the w.f. of the 1st centre

$$\Psi(\vec{r},t) = \sum_{\alpha} a_{\alpha}(t) \left(\phi_{\alpha}^{A}(\vec{r}_{A}) e^{-i\varepsilon_{\alpha}t + i\pi_{\alpha}^{A}(\vec{r},t) - iv^{2}t/8} + \sum_{\beta} b_{\beta}(t) \phi_{\beta}^{B}(\vec{r}_{B}) e^{-i\varepsilon_{\beta}t + i\pi_{\beta}^{B}(\vec{r},t) - iv^{2}t/8} \right)$$

2nd problem is inTDSE

What is the solution?

• The correct 1-centre expansion should look like

$$\Psi(\vec{r},t) = \sum_{\alpha} a_{\alpha}(t)\phi_{\alpha}^{A}(\vec{r}_{A})e^{-i\varepsilon_{\alpha}t} \Longrightarrow \tilde{\Psi}(\vec{r},t) = \sum_{\alpha} a_{\alpha}(t)\phi_{\alpha}^{A}(\vec{r}_{A})e^{i\vec{k}_{\alpha}\vec{\sigma}}$$

Both satisfy the semi-classical TDSE

$$i\frac{\partial\Psi(\vec{r},\vec{b},t)}{\partial t} = (T_{\vec{r}} + V)\Psi(\vec{r},\vec{b},t)$$

• But $\tilde{\Psi}$ also satisfies the full (exact) TISE $(E-H)\tilde{\Psi}=0$

How does temporal factor emerge?

Since z = vt

$$(\boldsymbol{k}_{\alpha} - \boldsymbol{k}_{\alpha'}) \cdot \boldsymbol{\sigma} \approx (\epsilon_{\alpha'} - \epsilon_{\alpha}) t + \boldsymbol{q}_{\perp} \cdot \boldsymbol{b}$$

What is the solution?

• The correct 2-centre expansion is

$$\tilde{\Psi}(\vec{r},t) = \sum_{\alpha} a_{\alpha}(t)\phi_{\alpha}^{A}(\vec{r}_{A})e^{i\vec{k}_{\alpha}\vec{\sigma}} + \sum_{\beta} b_{\beta}(t)\phi_{\beta}^{B}(\vec{r}_{B})e^{i\vec{k}_{\beta}\vec{\rho}}$$

• This w.f. does not satisfy TDSE

$$i\frac{\partial \tilde{\Psi}(\vec{r},t)}{\partial t} \neq (T_{\vec{r}}+V)\tilde{\Psi}(\vec{r},t)$$

• But satisfies the full TISE $(E-H)\tilde{\Psi} = 0$

How does ETF appear?

$$\begin{split} \boldsymbol{k}_{\beta} \cdot \boldsymbol{\sigma}_{\mathrm{P}} - \boldsymbol{k}_{\alpha'} \cdot \boldsymbol{\sigma}_{\mathrm{T}} &= p_{\beta \parallel} z + \boldsymbol{p}_{\beta \perp} \cdot \boldsymbol{b} + \boldsymbol{v} \cdot \boldsymbol{r}_{\mathrm{T}} \\ p_{\beta \parallel} &= -v/2 + (\epsilon_{\alpha'} - \epsilon_{\beta})/v \\ \boldsymbol{k}_{\beta} \cdot \boldsymbol{\sigma}_{\mathrm{P}} - \boldsymbol{k}_{\alpha'} \cdot \boldsymbol{\sigma}_{\mathrm{T}} &= (\epsilon_{\alpha'} - \epsilon_{\beta})t \underbrace{-v^2 t/2}_{+ \boldsymbol{p}_{\beta \perp} \cdot \boldsymbol{b}} + v \cdot \boldsymbol{r}_{\mathrm{T}} \overset{}{\searrow} \mathbf{ETF} \end{split}$$

- These 2 terms were introduced *ad-hoc* to fix the problem
- In our approach they appear naturally
- Details: Abdurakhmanov etal, PRA 97, 032707 (2018)

2-centre semi-classical equations

• Inserting $\tilde{\Psi}$ into TISE $(E - H)\tilde{\Psi} = 0$ and using semi-classical approximation we get the same result as we would get using PW ETFs

$$i \begin{pmatrix} \mathbf{I} & \mathbf{G}^A \\ \mathbf{G}^B & \mathbf{I} \end{pmatrix} \begin{pmatrix} \dot{\mathbf{a}} \\ \dot{\mathbf{b}} \end{pmatrix} = \begin{pmatrix} \mathbf{D}^A & \mathbf{Q}^A \\ \mathbf{Q}^B & \mathbf{D}^B \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix}$$

NB: Compare with 1-centre case: $i\dot{a} = D^A a$

• Thus there is no SC TDSE when rearrangment inlcuded

Wave-packet continuum discretisation

Advantages of WP: there are 3

$$\left\langle \psi_{\vec{k}} \left| \phi_{f} \right\rangle = \sqrt{\frac{2}{\pi}} (-i)^{l} e^{i\sigma_{l}} b_{nl}(k) Y_{lm}(\hat{k}) \right.$$
$$b_{nl}(k) = \int_{0}^{\infty} dr \varphi_{kl}(r) \ \varphi_{n}^{WP}(r) = \frac{1}{\sqrt{w_{n}}}$$

Ionisation amplitude

$$\mathcal{T}^{post} \neq \left\langle \vec{q}_{f}, \vec{k} \left| \mathcal{V} \right| \mathcal{\Psi}_{i}^{+} \right\rangle$$

Surface-integral formulation of scattering theory
 Kadyrov *et al.*, Ann Phys 324 (2009) 1516:

Kadyrov et al, PRL 101 (2008) 230405

$$T^{post} = \left\langle \Phi_{0}^{-} \left| \vec{H} - E \right| \Psi_{i}^{+} \right\rangle$$

$$\approx \left\langle \Phi_{0}^{-} \left| I_{N} \left(\vec{H} - E \right) I_{N} \right| \Psi_{i}^{+} \right\rangle$$

$$= \left\langle \vec{q}_{f}, \psi_{\vec{k}} \right| I_{N} \left(\vec{H} - E \right) \left| \Psi_{i}^{N+} \right\rangle = \sum_{n=1}^{N} \left\langle \psi_{\vec{k}} \right| \phi_{n} \right\rangle \left\langle \phi_{n}, \vec{q}_{f} \left| \vec{H} - E \right| \Psi_{i}^{N+} \right\rangle$$

$$= \left\langle \psi_{\vec{k}} \right| \phi_{f} \right\rangle \tilde{T}_{fi} \quad \text{for} \quad k^{2} / 2 = \varepsilon_{f}$$

Breakup amplitude including ECC

□ Surface-integral formulation of scattering theory:

$$T^{post} = \left\langle \Phi_0^{-} \left| \tilde{H} - E \right| \Psi_i^{+} \right\rangle \approx \left\langle \Phi_0^{-} (I_N^{T} + I_M^{P}) \right| \tilde{H} - E \left| (I_N^{T} + I_M^{P}) \Psi_i^{+} \right\rangle$$
$$= \left\langle \Phi_0^{-} I_N^{T} \right| \tilde{H} - E \left| \Psi_i^{NM+} \right\rangle + \left\langle \Phi_0^{-} I_M^{P} \right| \tilde{H} - E \left| \Psi_i^{NM+} \right\rangle$$

Thus the breakup amplitude splits into two:

direct ionisation (DI) and electron capture to continuum (ECC)

$$T^{T} = \left\langle \vec{q}_{f}, \psi_{\vec{k}}^{T} \middle| I_{N} \left(\tilde{H} - E \right) \middle| \Psi_{i}^{NM+} \right\rangle = \left\langle \psi_{\vec{k}}^{T} \middle| \phi_{f}^{T} \right\rangle \tilde{T}_{fi}^{T} \quad \text{for} \quad k^{2} / 2 = \varepsilon_{f}$$
$$T^{P} = \left\langle \vec{q}_{f}, \psi_{\vec{p}}^{P} \middle| I_{P} \left(\tilde{H} - E \right) \middle| \Psi_{i}^{NM+} \right\rangle = \left\langle \psi_{\vec{p}}^{P} \middle| \phi_{f}^{P} \right\rangle \tilde{T}_{fi}^{T} \quad \text{for} \quad p^{2} / 2 = \varepsilon_{f}$$

where $\psi_{\vec{k}}^{T}$ and $\psi_{\vec{p}}^{P}$ are the continuum states of target and projectile.

p + H(n=2)

Figure 1. The weighted elastic bP_{2s}^{el} , total ionization bP_{2s}^{ion} and total electron-capture bP_{2s}^{tec} probabilities as a function of impact parameter for 10 keV protons scattering off atomic hydrogen in the 2s state.

Figure 2. Convergence of the elastic, total ionization and total electron-capture cross sections for proton scattering off atomic hydrogen in the metastable 2s state.

Figure 3. The cross sections for super-elastic, elastic and quasielastic scattering in p-H(2s) collisions.

Figure 4. The cross sections for excitation of the n = 3-shell states in p–H(2s) collisions. The cross sections for excitations to the p and d states are summed over the magnetic quantum number. The CTMC and AOCC-PS results of Pindzola *et al* [9], and the FBA cross sections are also shown for comparison.

Figure 5. Select electron-capture cross sections for p-H(2s) collisions. The CTMC and AOCC-PS calculations of Pindzola *et al* [9] (see text) are also shown for comparison. The cross sections for electron-capture to the *p* and *d* states are summed over the magnetic quantum number.

Figure 6. Convergence of the elastic, total ionization and total electron-capture cross sections for proton scattering off atomic hydrogen in the $2p_0$ and $2p_1$ states.

Figure 7. The super-elastic, elastic and quasi-elastic scattering, and electron-capture cross sections for proton scattering on atomic hydrogen in the $2p_0$ and $2p_1$ states.

Density matrix*

$$\rho_{\alpha'\alpha}^{i} = 2\pi \int_{0}^{\infty} \mathrm{d}b b F_{\alpha'i}^{*}(+\infty, b) F_{\alpha i}(+\infty, b)$$

Table 3. Density matrix elements $\rho_{\alpha'\alpha}^{2p_1}$ (in 10⁻¹⁶ cm²) for excitation of H(2p_1) into the final n = 1-4 shell states of the target by proton impact at 50 keV.

α'	lpha	Re	Im	α'	α	Re	Im	α'	α	Re	Im	α'	α	Re	Im
100	100	2.28[-1]	0	210	321	-8.87[-1]	7.04[-1]	310	420	-1.69[-1]	-3.33[-2]	400	431	1.29[-2]	8.12[-4]
100	200	-1.23	2.32[-1]	210	322	-1.17	-1.28	310	421	2.58[-2]	-2.82[-1]	400	432	-2.96[-2]	2.05[-2]
100	210	-1.84[-1]	1.60[-1]	210	410	-4.66[-2]	-4.82[-2]	310	422	4.19[-1]	1.95[-2]	400	433	-3.68[-2]	-2.76[-2]
100	211	6.69[-1]	-1.29	210	411	3.79[-1]	-7.70[-2]	310	430	8.06[-2]	-2.76[-2]	410	410	2.08[-2]	0
100	300	-1.75[-1]	-6.42[-2]	210	420	1.36[-1]	2.12[-1]	310	431	2.90[-2]	1.55[-1]	410	411	-1.12[-2]	5.09[-2]
100	310	6.68[-2]	2.27[-2]	210	421	-3.80[-1]	3.27[-1]	310	432	-1.55[-1]	9.14[-2]	410	420	-5.62[-2]	-2.81[-2]
100	311	-3.80[-1]	5.19[-1]	210	422	-5.28[-1]	-5.43[-1]	310	433	-1.27[-1]	-1.26[-1]	410	421	3.11[-2]	-8.77[-2]
100	320	-1.57[-1]	5.04[-3]	210	430	-9.08[-2]	-3.96[-2]	311	311	2.28	0	410	422	1.29[-1]	4.29[-2]
100	321	-1.40[-1]	-4.39[-1]	210	431	1.74[-1]	-2.06[-1]	311	321	-1.77	1.15	410	430	3.31[-2]	-1.30[-3]
100	322	6.86[-1]	-2.16[-1]	210	432	2.79[-1]	6.56[-2]	311	322	-1.89	-2.61	410	431	-1.20[-3]	5.12[-2]
100	400	-6.72[-2]	-3.14[-2]	210	433	1.03[-2]	2.76[-1]	311	411	1.00	4.02[-2]	410	432	-5.92[-2]	1.56[-2]
100	410	1.35[-2]	1.03[-2]	211	211	13.0	0	311	421	-8.49[-1]	5.82[-1]	410	433	-3.16[-2]	-5.67[-2]
100	411	-1.93[-1]	2.27[-1]	211	311	-3.90	-6.00[-1]	311	422	-9.26[-1]	-1.17	411	411	4.58[-1]	0
100	420	-7.26[-2]	3.79[-3]	211	321	2.64	-5.18[-1]	311	431	4.40[-1]	-3.59[-1]	411	421	-3.29[-1]	2.35[-1]
100	421	-4.16[-2]	-2.40[-1]	211	322	7.40[-1]	4.54	311	432	4.97[-1]	1.95[-1]	411	422	-3.62[-1]	-4.54[-1]
100	422	3.59[-1]	-8.02[-2]	211	411	-1.90	-3.09[-1]	311	433	-5.87[-2]	4.94[-1]	411	431	1.78[-1]	-1.43[-1]
100	430	8.67[-4]	-1.58[-2]	211	421	1.36	-3.70[-1]	320	320	1.45	0	411	432	1.85[-1]	7.88[-2]

Abdurakhmanov et al, Plasma Phys. Control. Fusion 60 (2018) 095009

200	200	∞	0	211	433	4.48[-1]	-5.79[-1]	320	421	1.20[-1]	9.04[-1]	420	422	-5.60[-1]	2.98[-2]
200	210	1.88	-2.30	300	300	3.29[-1]	0	320	422	-1.33	2.13[-1]	420	430	-9.32[-2]	6.68[-2]

C^{6+} + H(1s) ionisation: test

e-capture and ionisation: convergence

electron capture

ionisation

Electron capture and ionisation

C⁶⁺-H DDCS at 1 MeV/amu

Exp: Tribedi et al., Phys Rev A 63, 062723 (2001)

C⁶⁺-H DDCS at 1 MeV/amu

Exp: Tribedi et al., Phys Rev A 63, 062723 (2001)

C⁶⁺-H DDCS at 2.5 MeV/amu

Exp: Tribedi et al., J Phys B 31, L369 (1998)

C⁶⁺-H DDCS at 2.5 MeV/amu

Exp: Tribedi et al., J Phys B 31, L369 (1998)

Conclusions

- Developed 2-centre CCC approach to HCI-atom collisions including ECC
- Resolved the notorious ETF problem. Details: PRA 97, 032707 (2018)
- Accurate calculations of the total and various differential cross sections for ionisation and electron capture in p + H and C⁶⁺ + H collisions
- \square p + He and H + H collisions
- \Box C⁶⁺ + H: DDCS and SDCS: good agreement at 2.5 MeV/amu
- DDCS: some disagreement when low-energy electrons are ejected near the forward direction at 1 MeV/amu
- SDCS: some disagreement with the experiment seen in the forward direction at 1 MeV/amu
- p + He: integrated cross sections in good agreement with experiment
- □ H + H: good agreement with experiment for electron-loss cross section

Acknowledgements

Co-authors:

Dr Ilkhom Abdurakhmanov Dr Jackson Bailey PhD candidate Shukhrat Alladustov Prof Igor Bray

This work is supported by Australian Research Council

Thank you for attention!