Neutral Beam Analysis Codes Used on the NSTX-U and DIII-D Tokamaks

D. P. Stotler¹, B. A. Grierson¹, D. Liu², M. Gorelenkova¹, W. W. Heidbrink², F. M. Levinton³, H. Yuh³, R.E. Bell¹ ¹Princeton Plasma Physics Lab, ²U. California Irvine, ³Nova Photonics *IAEA 1. RCM on Data for Atomic Processes of Neutral Beams in Fusion Plasmas* 19 – 21 June 2017

Outline

- Background & Introduction
 - Experiments
 - Relevant expertise of Chief & Secondary SI
- Project Codes & Diagnostics
 - TRANSP / NUBEAM
 - FIDAsim
 - CHERS
 - MSE
- NUBEAM FIDAsim Benchmark
- FIDAsim Validation
- Project Description
- Project Status

DIII-D Tokamak & NBI Systems

- R = 1.67 m, a = 0.67 m Four beam boxes, two
 - B_T = 2.2 T
 - I_p ~ 1 MA
- T_e, T_i: 1 10 keV,
- n_e up to 10²⁰ m⁻³.

 Four beam boxes, two sources each:

- 45 93 kV, up to 34 MW total.
- Three co-l_p, one¹⁰ counter.

[W. Heidbrink, et al., Nucl. Fusion 52, 094005 (2012)]

National Spherical Torus Experiment - Upgrade (NSTX-U)

- With the upgrade:
 - R = $0.86 \rightarrow 0.94$ m,
 - a = 0.6 m
 - $B_T = 0.5 \rightarrow 1 T$
 - $I_p = 1 \rightarrow 2 \text{ MA}$
- Plasma: T_e ~1 keV,
- n_e up to 10²⁰ m⁻³.
- Two beam lines, three sources each,
 - Energy up to 90 keV,
 - Up to 15 MW total.

Outline

- Background & Introduction
 - Experiments
 - Relevant expertise of Chief & Secondary SI
- Project Codes & Diagnostics
 - TRANSP / NUBEAM
 - FIDAsim
 - CHERS
 - MSE
- NUBEAM FIDAsim Benchmark
- FIDAsim Validation
- Project Description
- Project Status

CSI: Neutral Transport & CR Model Data

- DEGAS 2: Monte Carlo neutral transport code:
 - Input material surfaces, geometry, plasma, neutral sources,
 - Specify plasma-neutral reactions, material interactions.
 - Output: neutral density, line emission.
- Principal reactions:
 - H effective ionization & recombination rates from CR model,
 - Up to 50 keV.
 - H₂ dissociation, ionization, etc.
 - H⁺ + H CX, elastic scattering.

DEGAS 2 inferred ambient neutral density profiles [D. Stotler, et al., Phys. Plasmas 22, 082506 (2015)].

Secondary CSI: Responsible for DIII-D CER Spectroscopy

- & DIII-D Neutral Beam Physics Leader
- 2014 DoE Early Career Research Program winner ⇒develop D⁺ charge exchange recombination (CER) diagnostic for DIII-D pedestal.
- Yields D⁺ temperature & velocity profiles.
- CER analysis utilizes multiple codes from project.

Outline

- Background & Introduction
 - Experiments
 - Relevant expertise of Chief & Secondary SI
- Project Codes & Diagnostics
 - TRANSP / NUBEAM
 - FIDAsim
 - CHERS
 - MSE
- NUBEAM FIDAsim Benchmark
- FIDAsim Validation
- Project Description
- Project Status

TRANSP: Time Dependent Interpretive & Predictive Transport Analysis Code

- Dates back to TFTR & earlier.
- Used to analyze data on many tokamaks:
 - NSTX, DIII-D, JET, ASDEX-U, KSTAR, MAST, ...
- Connected to IMAS (ITER Modeling & Analysis Suite).
- NUBEAM is a central routine.

NUBEAM: Monte Carlo Beam Injection & Slowing Down Module in TRANSP

- [A. Pankin et al., Comput. Phys. Comm. 159, 157 (2004)].
- Includes:
 - Beam deposition,
 - Fast ion orbits & slowing down,
 - Beam driven current,
 - Fusion reactions.
- 3-D, multiple generation, halo neutral population.
- Multiple atomic physics options,
 - Focus here on newest, ADAS based models.

3-D "box" used for a beam [S. Medley et al., Plasma Phys. Control. Fusion 58, 025007 (2016)].

FIDAsim Supports Multiple Fast Ion \textbf{D}_{α} Diagnostics on DIII-D & NSTX-U

- Supports FIDA, Neutral Particle Analyzer (NPA), CER, ···
 - FIDA: Fast Ion D_α, result of CX between fast ions & beam atoms.
- Similar to, but independent of NUBEAM.
 - Monte Carlo beam penetration & halo calculation.
- Includes beam attenuation by electrons, main & impurity ions.
- Time dependent collisional radiative model, up to n=6.
- Charge exchange with main and fast ions,
 - Fast ion distribution obtained from NUBEAM.
- [W. Heidbrink et al., Commun. Comput. Physics 10, 716 (2011)],
 - But see: https://github.com/ D3DEnergetic/FIDASIM/

 $D_{fast}^{+} + D_{NB}^{0} \rightarrow D_{fast}^{0} + D_{NB}^{+}$ $D_{bulk}^{+} + D_{NB}^{0} \rightarrow D_{halo}^{0} + D_{NB}^{+}$ $D_{fast}^{+} + D_{halo}^{0} \rightarrow D_{fast}^{0} + D_{bulk}^{+}$ $D_{bulk}^{+} + D_{halo}^{0} \rightarrow D_{halo_high_generation}^{0} + D^{+}$

NSTX-U Charge Exchange Recombination Spectroscopy: CHERS

- Determine C⁺⁶ density, temperature, toroidal & poloidal velocity.
- V_{pol} Measurement sensitive to atomic physics details & gyroorbit.
 - Presently, all via ADAS.
- $D^0(n_D) + C^{6+} \rightarrow D^+ + C^{5+}(n)$,
 - View n = 8 \rightarrow 7,
 - $n \approx n_D Z^{3/4} \Rightarrow n_D = 2$,
 - But, need data for n_D = 3, 4, 5 also.

[R. Bell and R. Feder, Rev. Sci. Instrum. 81, 10D724 (2010),
 R. Bell et al., Phys. Plasmas 17, 082507 (2010)]

Motional Stark Effect for NSTX-U & ITER

Measures B_{pol}.

June 19, 2017

- Initial NSTX system: Collisionally Induced Fluorescence (CIF) [F. Levinton and H. Yuh, Rev. Sci. Instrum. 79, 10F522 (2008)],
 - Collisional excitation of beam atoms \Rightarrow Stark effect polarized D_{α} .
- Laser Induced Fluorescence (LIF) now on NSTX-U [E. Foley and F. Levinton, Rev. Sci. Instrum. 84, 043110 (2013)],
 - Provides radial resolution.
- MSE for ITER will use "line shift" approach [E. Foley et al., Rev. Sci. Instrum. 79, 10F521 (2008)].
 - To minimize effect of mirror coatings.
- CR model used for analysis requires *nl* resolved cross sections [E. Foley and F. Levinton, J. Phys. B 39, 443 (2006)].

Neutral Beam (3 sources)

MSE-CIF Collection

Polarimeter

- Fiber Arrav

CIF:

Future Channels

Present MSE Positions

> Plasma Edge

Outline

- Background & Introduction
 - Experiments
 - Relevant expertise of Chief & Secondary SI
- Project Codes & Diagnostics
 - TRANSP / NUBEAM
 - FIDAsim
 - CHERS
 - MSE
- NUBEAM FIDAsim Benchmark
- FIDAsim Validation
- Project Description
- Project Status

NUBEAM - FIDAsim Benchmark

- Focused primarily on verifying NUBEAM's halo model [S. Medley et al., Plasma Phys. Control. Fusion 58, 025007 (2016)].
- Halo density comparable to beam density ⇒cannot be ignored.
- For comparison, use ground state ADAS cross sections only.
 - & no "fast" halo neutrals in TRANSP.
- One NSTX beam source with 3 energy components, focus & divergence,
 - Realistic plasma profiles, including toroidal rotation.

NUBEAM-FIDAsim: Comparison of Beam & Halo Densities

June 19, 2017 Stotler - RCM on Data for Atomic Processes of Neutral Beams

NUBEAM-FIDAsim: Density Profile Comparison

NUBEAM & FIDAsimHalo Densities Sensitive to Cross Sections

- Now use default sets of cross sections for both codes:
 - NUBEAM: ADAS310.
 - FIDAsim: excited states n ≤ 6 from ADAS & [Janev, Reiter, Samm, Juel-4105 (2004)].
- Beam densities match,
- But, NUBEAM halo density ~20% larger than FIDAsim.

Outline

- Background & Introduction
 - Experiments
 - Relevant expertise of Chief & Secondary SI
- Project Codes & Diagnostics
 - TRANSP / NUBEAM
 - FIDAsim
 - CHERS
 - MSE
- NUBEAM FIDAsim Benchmark
- FIDAsim Validation
- Project Description
- Project Status

CX Spectrum Gives DIII-D Beam Density Components & FIDA

DIII-D CER FIDA & Beam Densities Match FIDAsim

June 19, 2017 Stotler - RCM on Data for Atomic Processes of Neutral Beams

FIDAsim Spectrum & Halo Also Match DIII-D CER Data

FIDAsim matches CER spectrum:

Comparison of direct halo emission:

144982, R = 1.84 m @ 1.58 s

June 19, 2017 Stotler - RCM on Data for Atomic Processes of Neutral Beams

Outline

- Background & Introduction
 - Experiments
 - Relevant expertise of Chief & Secondary SI
- Project Codes & Diagnostics
 - TRANSP / NUBEAM
 - FIDAsim
 - CHERS
 - MSE
- NUBEAM FIDAsim Benchmark
- FIDAsim Validation
- Project Description
- Project Status

Project Scope

- Limited to codes run for DIII-D & NSTX-U,
 - Beam energy up to ~90 keV, T ~ 1-10 keV.
- Carbon plasma facing components ⇒ principal impurity is carbon,
 - NSTX-U will use extensive Li conditioning,
 - Both seed impurities for radiative divertor studies.
- Primary lines for diagnostics: D_{α} and C^{5+} (n=8 \rightarrow 7).
- NUBEAM developers working on He beam model.

Project Plan: Year One

- List atomic physics processes in these codes,
 - Identify sources of cross sections & rates.
- Assess data consistency where processes overlap.
 - Are any data obsolete?
- Determine status of data for CHERS:
 D(n > 2) + C⁶⁺ charge exchange.

Project Plan: Year Two

- Compare collisional radiative rates in overlapping regimes.
- Provide NUBEAM-FIDAsim benchmark details, as needed.
- Document parameters of DIII-D FIDAsim validation tests.
- Report on progress towards understanding inconsistencies in DIII-D impurity injection & beam voltage variation experiments.

Project Plan: Year Three

- Document outstanding data needs, if any.
- Revise atomic physics data according to input from CRP.
- Update progress towards understanding inconsistencies in DIII-D experiments.
- Assess data requirements for NUBEAM simulation of He beams.

Project Status

• FIDAsim extremely well documented,

- Processes included easily identified,
- Sources of data have already been established.
- NUBEAM: focusing on processes & data used in FIDAsim benchmark,
 - All NUBEAM data based on ADAS.
- Have for comparison data from H CR model used by DEGAS 2 for low energy neutral modeling.
- Prepared to discuss need for D(n > 2) + C⁶⁺ charge exchange data.

FOR DISCUSSION

Need for C⁺⁶ + D(n>2) CX Data

- Following slides show CHERS measurements on TFTR of n = 8 → 7, 14 → 10, and 17 → 11 line ratios,
 - Similar ratios have been seen more recently on DIII-D.
- The n≈n_D Z^{3/4} scaling ⇒n_D = 2, 3, 4, 5 preferentially populates n = 8, 12, 15, 19.

• \Rightarrow n_D > 2 data needed to explain these ratios.

TFTR spectra indicate that C VI (*n*=14-10) to C VI (*n*=8-7) brightness ratio is ~3.6 %

About 50% of brightness @516.7nm on NSTX can be due to C VI

Brightness ratios measure n-level population ratios

- Assuming fully mixed levels, the TFTR measurements imply that the *n*=14 and *n*=17 levels are more populated by charge exchange with the neutral beams that the *n*=8 level
- The CR model using donor neutrals n_D=1,2,3 does not adequately populate the upper levels
- Other populating mechanisms, e.g. n_D=4,5,6, are required to match measured brightness ratio.

 $B \propto A_{ki} N_k$ N_k is population of n - level k A_{ki} coefficients for C VI: $A_{8-7} = 2.94 \times 10^8$ $A_{14-10} = 7.02 \times 10^{6}$ $A_{17-11} = 2.08 \times 10^{6}$ $\frac{B_{14-10}}{M_{14-10}} = \frac{A_{14-10}}{M_{14}} = \frac{1}{M_{14}}$ B_{8-7} A_{8-7} N_8 28 $\frac{N_{14}}{M_{14}} = \frac{B_{14-10}}{M_{8-7}} = 1.5$ $N_8 = B_{8-7} A_{14-10}$ $\frac{B_{17-11}}{B_{8-7}} \approx \frac{1}{120} \implies \frac{N_{17}}{N_8} = 1.2$

10

O'Mullane Proposed Plan for Assessing Existing Data & Scalings

- ADAS CXRS model needs *nl*-resolved input cross sections,
 - Only have comprehensive data for n = 1 & 2.
 - Some data for n = 3 & 4.
- Janev APID Vol. 4 has scaling for D(n > 3), but needs to be checked.
- More details in his email dated June 24, 2015.

FIDAsim Time Dependent CR Model

- Proton excitation:
 - All n, m from JRS-4105,
 - For $n \ge 4$, m >n, this is Lodge-Percival-Richards.
- Proton charge exchange on next slide
- Proton ionization:
 - For n = 1, use JRS-4105,
 - For n = 2 \rightarrow 5, use adas_c09_01.pdf.
 - Higher n uses scaled n=5 cross section.
- Electron impact excitation:
 - All from JRS-4105 ("Johnson" for $n \ge 2$, $m \ge 4$).
- Electron impact ionization:
 - All from JRS-4105 ("Johnson" for $n \ge 4$).
- Charge exchange on fully stripped impurities:
 - Uses ADAS data where available,
 - For C⁺⁶, n = 1 (qcx#h0_old#c6.dat), 2 (h0_ex2), 3 (h0_ex3).
 - Also has fits for B⁺⁵.
 - Everything else uses q > 3 fit from APID Vol. 4.
- Excitation by fully stripped impurities:
 - All use general Z expressions in APID Vol. 4.
- Ionization by fully stripped impurities:
 - All from APID Vol. 4,
 - Specific fits for B^{+5} , C^{+6} & n = 1.
 - General fit for everything else.

 $\frac{df_n}{dt} = -\left(\sum_{k=1,2} f_n d_k X_n^k + \sum_{k=n,k,2} f_n d_k I_n^k\right)$

 $+\sum_{m>n}\left(f_m A_{m\to n} + \sum_{k=e,i,Z}(f_m d_k q_{m\to n}^k - f_n d_k q_{n\to m}^k)\right)$

 $+\sum_{n>m}\left(-f_nA_{n\to m}+\sum_{k=e,i,Z}(f_md_kq_{m\to n}^k-f_nd_kq_{n\to m}^k)\right)$

 $\frac{d\mathbf{f}}{dt} = \mathbf{C} \cdot \mathbf{f}$

 $\mathbf{f}(t) = e^{\mathbf{C}t} \cdot \mathbf{f}(0) = \mathbf{S} \cdot e^{\mathbf{\Lambda}t} \cdot \mathbf{S}^{-1} \cdot \mathbf{f}(0)$

FIDAsim Proton Charge Exchange Data

- Use "equivalence principle" to obtain reverse reactions for data available in ADAS:
- Data from JRS-4105 used to fill out table, $\sigma(n_f \rightarrow n_i) = \frac{E_i}{E_f} \frac{n_i^2}{n_r^2} \sigma(n_i \rightarrow n_f)$

 - But, cross sections summed over $m \Rightarrow$ "spread" out assuming exponential variation with energy difference.
 - Scaling expressions used for $n \ge 4$.

n \ m	1	2	3	4	5	6	Total
1	ADAS	ADAS	ADAS	ADAS	Spread	Spread	Janev(n=1)
2	Equivalence	ADAS	ADAS	Spread	Spread	Spread	Janev(n=2)
3	Equivalence	ADAS	ADAS	ADAS	ADAS	Spread	ADAS/Janev(n=3)
4	Equivalence	Equivalence	Equivalence	Spread	Spread	Spread	Janev(n=4)
5	Spread	Equivalence	Equivalence	Spread	Spread	Spread	Janev(n=4)
6	Spread	Equivalence	Equivalence	Spread	Spread	Spread	Janev(n=4)

H-H Charge Exchange Data Source

ADAS files used in adf01/qcx#h0: qcx#h0 old#h1.dat qcx#h0_e2s#h1.dat qcx#h0 e2p#h1.dat qcx#h0 ex3#h1.dat

NUBEAM Data

- Many options \Rightarrow this is a work in progress.
- Focused on three options examined in FIDAsim benchmark, all based on ADAS data:
 - . Ground state beam atoms only,
 - 2. Incorporate excited state effects through enhanced stopping cross section,
 - 3. Stopping cross sections from ADAS_310.
 - ADAS code incorporated into the PREACT package compiled into NUBEAM.
- Ground state data used:
 - Ion interactions from adf02/sia#h/sia#h_j99#h.dat files for both D+ & fully stripped impurities.
 - Electron impact data from adf07/szd93#h/szd93#h_h.dat.
- ADAS files referenced by ADAS_310 related routines:
 - From adf18/p310_a17/bndlen_exp#h0.dat
 - And adf01/qcx#h0/qcx#h0_e2p#h1.dat
 - And adf04/hlike/hlike_bn#h91h.dat and l91h.dat.
 - And adf02/sia#h/sia#h_j99#h.dat.