## Atomic data and collisional-radiative modelling of neutral beams in eigenstates

**Oleksandr Marchuk** 

Institute for Climate and Energy Research, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany

## Contents

- Introduction
- Linear Stark Effect for the H atom in the plasma
- Linear Zeeman-Stark Effect for the H atom in the plasma
  - Impact of the Zeeman effect on the line intensities (polarization)
- Atomic data and CRM in parabolic states
- Comparison of atomic model with the ALCATOR-C Mod and JET spectra
- Conclusion and Outlook

## Injection of fast atoms and plasma spectroscopy



Plasma parameters:

- Density = 10<sup>13</sup>... 10<sup>14</sup> cm<sup>-3</sup>
- Beam energy = 20 .. 200 keV/u
- Temperature = 1..15 keV
- Magnetic field = 1.. 5 T

$$H_{0} + \{e, H^{+}, X_{z}\} \rightarrow H^{*} + \{e, H^{+}, X_{z}\} \rightarrow \hbar\omega (1)$$
$$H_{0} + X_{z+1} \rightarrow H^{+} + X_{z}^{*}(nl) \rightarrow \hbar\omega (2)$$
$$H^{+} + H_{0} \rightarrow H^{*} + H^{+} \rightarrow \hbar\omega (3)$$

#### (1) beam-emission spectroscopy (BES)

- (2) source of charge-exchange diagnostic
- (3) source of fast ion diagnostic and main ion ratio
  - measurements (ACX- active charge-exchange,
  - PCX- passive charge-exchange)

### Example of the ${\rm H}_{\alpha}$ line emission at the plasma edge



Fine-structure of hydrogen atoms is never observed in fusion plasmas

- Doppler effect due to the thermal motion of atoms
- □ Zeeman effect due to the magnetic field

## Excited states in the active beam diagnostics

- The role of the excited states in the beam penetration: Janev R. et al. Phys. Rev. Lett. **52** 534 (1984)
- The first collisional-radiative model for the beam was introduced



$$I(x) = I_0 \exp\left(-\frac{x}{\lambda_0}\right),$$

$$\lambda_0 = 1/(N_i \sigma_i v) - e$$
-folding

length,

 $N_i$  – is the ion density

 $\sigma_i$  - is the ionization cross-section

v – is the beam velocity

x – is the distance along the beam

 $\delta = (\lambda - \lambda_0)/\lambda$ 

Increased (multi-step) ionization of beam atoms in the plasma → stronger attenuation

## Problems in the CR models up to 2009



Hutchinson I. Plasma Phys. Contr. Fusion 44 71 (2002)

 $\hfill The comparison in the emission of H_{\alpha}$  line reveals the deviations up to the factor of 2-3

## Status of statistical models



Delabie E. et al. PPCF 52 125008 (2010)



O. Marchuk and Yu. Ralchenko, "Populations of Excited Parabolic States of Hydrogen Beam in Fusion Plasmas", Springer-Verlag in "Atomic Processes in Basic and Applied Physics" eds by Tawara and Shevelko(2012) https://link.springer.com/chapter/10.1007/978-3-642-25569-4\_4

Solid lines with points – present calculations Dashed line - Hutchinson I PPCF **44** 71 (2002)

□ That is the first time that the population of excited states (n-states) of the beam agree within 20% for three different models in the density range of 10<sup>13</sup>-10<sup>14</sup>cm<sup>-3</sup>:

□ Key component: ionization data from n=2 and n=3 states

## Fields "observed" by the H atom



□ Example: B = 1 T, E = 100 keV/u  $\rightarrow$  v = 4.4·10<sup>8</sup> cm/s  $\rightarrow$  F = 44 kV/cm

- Strong electric and magnetic field in the rest frame of the atom is experienced by the bound electron
- □ External fields are usually considered as perturbation applied to the field-free solution

### Linear Stark effect for the excited states

- Hamiltonian is diagonal in parabolic quantum numbers
- Spherical symmetry of the atom is replaced by the axial symmetry around the direction of electric field.



The energy of the m –levels is not degenerated any more in the presence of electric field (multiplet structure)



# Linear Zeeman-Stark for the excited states

• The angle between magnetic and electric field matters. In the case of H/D beam atom in the plasma

 $\vec{F'} = \vec{F} + \frac{1}{c}\vec{v} \times \vec{B}$  (translational electric field)

• In the case of the strong field approximation (with spin) the new energy of the levels

$$E^{\pm}(n,k) \approx \pm \Omega + k \sqrt{\left(\frac{3}{2}nF\right)^2 + \Omega^2}.$$

$$\Omega = \frac{1}{2} \times \frac{B}{B_0}, \quad B_0 = 2.35 \times 10^5 T$$
$$F = \frac{E_L}{E_0}, E_0 = 5.142 \times 10^{11} V/m$$

Parabolic quantum numbers:

 $n=n_1 + n_2 + |m|+1$ ;  $n_1 \ge 0$ ,  $n_2 \ge 0$ ;  $k = n_1 - n_2$  electric quantum number

#### Energy levels of n=2 of H atoms in the plasma



R. Reimer et al, RSI (to be published)

a) point-point line – Stark effect + FS ; solid line – Zeeman Stark effect + FS

b) point-point line – Stark effect + FS; dashed-point line- Zeeman Stark effect ; solid line – Zeeman Stark effect + FS

 The energy separation between different states is order of magnitude higher compared to the field free case → impact on the cross sections (LTE vs. nonLTE)

## Polarization of spectral lines



 $I_{\pi}$ ,  $I_{\sigma}$  - are the line intensities (calculation does not depend on the observation angle)

The  $\pi$ - transitions are the transitions which do not change the projection of angular momentum (magnetic quantum number m) onto the z axis,  $\Delta m=0$ 

The  $\sigma$ - transitions are the transitions which change the projection of angular momentum onto the z axis,  $\Delta m = \pm 1$ .

## Comparison for the $H_{\alpha}$ multiplet between Zeeman–Stark and Stark effect



- Zeeman effect affects the polarization fraction of Stark multiplet
   → impact on the pitch angle measurements
- The sum over all the  $\sigma$  and  $\pi$  components remains conserved

### Why $\pi$ - to $\sigma$ - ratio is so important for fusion ?

- Vector  $\vec{B}$  is unknown.
- Vector  $\vec{v}$  is known (beam direction and beam velocity)
- Direction of  $\vec{F}$  (angle  $\theta$ ) could be measured using the formula:



Atomic model must be able to calculate the line intensities without any assumption on statistical populations Example of the impact of the Zeeman effect on the pitch angle measurements  $\theta$ 

$$T = \frac{\sum I_{\pi}}{\sum I_{\sigma}} \times \frac{2sin^{2}(\theta)}{1 + cos^{2}(\theta)}$$



R. Reimer et al, RSI (to be pusblished)

• Atomic model modifies the derived angle of magnetic field on the order of up to 2-3°

## First atomic model of Ha Stark multiplet

• Lines separation and lines intensities



E. Schrödinger, Ann. der Physik 80(13) 437 (1926)

Lines Intensity  $I_{pq} \sim N_p \times A_{pq}$   $N_p$  is a population (density) of the state *p*  $A_{pq}$  is a radiative decay rate p $\rightarrow$ q (1/s)

 Statistical assumption – statistical model: (Boltzmann distribution)

$$\frac{N_a}{N_b} = \frac{g_a}{g_b} \exp\left(-\frac{\Delta E_{ab}}{T_e}\right),$$

 $g_a$  – is the statistical weight of the state *a*,  $\Delta E_{ab} = E_a - E_b$  is the energy difference between the states *a* and *b*  $T_e$  - is the plasma temperature



#### Beam emission spectra measured at JET $H_{\alpha}$ (n=3 $\rightarrow$ n=2) Delabie E. et al. Plasma Phys. Contr. Fusion **52** 125008 (2010)



- 3 components in the beam (E/1, E/2, E/3)
- Passive light from the edge
- Emission of thermal H<sup>+</sup> and D<sup>+</sup>
- Cold components of CII
  Zeeman multiplet
- Overlapped components of Stark effect spectra

 Intensity of MSE multiplet as a function of observation angle ϑ relative to the direction of electric field

$$I(\theta) = I_{\pi} \sin^2(\theta) + I_{\sigma} (1 + \cos^2(\theta))/2$$

• Ratios among  $\pi$ -( $\Delta m=0$ ) and  $\sigma$ - ( $\Delta m=\pm 1$ ) lines within the multiplet are well defined and should be constant.

## Measured intensities vs. statistical intensities



- Observed line intensities with the same polarization show clear deviation from the statistical model.
- The non-statistical atomic models for fast atoms in parabolic (*eigen*) states must be developed.

## Atomic data in parabolic states (m-resolved)

Radiative decays

□ Well known (Bethe & Salpeter)

Electron-impact processes

□ Too high energies => small cross sections

Proton-impact processes

□ The strongest but...

Problem: no cross sections/rate coefficients for transitions between parabolic states

#### Calculation of the cross sections in parabolic states



Calculations include two transformations of wavefunctions

Rotation of the collisional (z') frame on the angle θ to match z frame Edmonds A R 1957 Angular Momentum in Quantum Mechanics (Princeton, NJ: Princeton University Press)

□ Transformation between the spherical and parabolic states in the same frame z Landau L D and Lifshitz E M 1976 *Quantum Mechanics: Non-Relativistic Theory* 

# Transformation between the spherical and parabolic states

**a)** 
$$\varphi_{a'} \rightarrow \varphi_a : \varphi_{nlm} = \sum_{m'=-l}^{l} D_{lm'}^{lm'}(\alpha) \varphi_{nlm'}$$
  
 $\varphi_a \rightarrow \psi_a : \psi_{nkm} = \sum_{l=|m|}^{n-1} C_{nk}^{lm} \varphi_{nlm}$ 



b) Example for the state: n=5, k=4, m=0



## Calculation of the cross sections and the density matrix

$$\sigma = \left| < n_i k_i m_i \left| \hat{O} \right| n_j k_j m_j > \right|^2 = \left| \sum_{\Delta m' = 2 - n_a - n_b} c_i c_j F_{a_i}^{b_j}(\vec{q}) \right|^2 + \left| \sum_{\Delta m' = 3 - n_a - n_b} c_i c_j F_{a_i}^{b_j}(\vec{q}) \right|^2 + \dots + \left| \sum_{\Delta m' = n_a + n_b - 3} c_i c_j F_{a_i}^{b_j}(\vec{q}) \right|^2 + \left| \sum_{\Delta m' = n_a + n_b - 2} c_i c_j F_{a_i}^{b_j}(\vec{q}) \right|^2$$

The coefficients c<sub>i</sub> and finally the cross section depend on the angle between the field and direction of the projectile

Presence of coherence terms in the expansion

□ Calculation of the cross section is equivalent to the calculation of the **density matrix** 

$$\sigma_{2\pm 10} = \frac{1}{2}\sigma_{2s0} + \frac{1}{2}\cos^2(\theta)\sigma_{2p0} + \frac{1}{2}\sin^2(\theta)\sigma_{2p1} \mp \cos(\theta)Re(\rho_{2s0}^{2p0})$$
  
$$\sigma_{20\pm 1} = \frac{1}{2}\sin^2(\theta)\sigma_{2p0} + \sigma_{2p1}\left(1 - \frac{1}{2}\sin^2(\theta)\right)$$



#### Influence of the orientation on the cross sections. AOCC calculations.



 Energy is varied in radial direction : 20...200 keV/u

•

Polar angle is the angle between the field direction and the projectile MSE : polar angle  $\alpha = \pi/2$ 

Marchuk O *et al.* 2013 *AIP Conf. Proc.* 1545 153 Marchuk O *et al.* 2011 *AIP Conf. Proc.* 1438 169

Example of the expression for the cross-sections:

$$\begin{aligned} \sigma_{2\pm10} &= \frac{1}{2}\sigma_{2s0} + \frac{1}{2}\cos^2(\alpha) \ \sigma_{2p0} + \frac{1}{2}\sin^2(\alpha) \ \sigma_{2p1} \mp \cos(\alpha) \text{Re}(\rho_{2s0}^{2p0}) \\ \sigma_{20\pm1} &= \frac{1}{2}\sin^2(\alpha) \ \sigma_{2p0} + \sigma_{2p1}\left(1 - \frac{1}{2}\sin^2(\alpha)\right) \end{aligned}$$

Statistical models are based on the atomic data in spherical representation
 The beam *eigenstates* are close to the parabolic ones



# Calculation of the cross sections in parabolic states



O. Marchuk, Yu. Ralchenko and DR Schultz Plasma Phys. Control. Fusion 54 (2012)

### Populations of parabolic Stark levels



O. Marchuk, Yu. Ralchenko and DR Schultz Plasma Phys. Control. Fusion 54 (2012)

#### Influence of the orientation on the Stark multiplet emission



O. Marchuk, Phys. Scr. 89 114010 (2014)

## Comparison with JET data



### Comparison with ALCATOR-C Mod data



 Only at low densities some deviations to the new CRM results are observed

The net emission of  $\sigma$  component is reduced relative to π one

I. Bespamyatnov et al. Nuclear Fusion 53 123010 (2013)

## Summary

- The m-resolved model in parabolic state up to n=10 was developed..
  - arbitrary orientation between the direction of the field and the atoms relative velocity
- The collisional redistribution among the parabolic states was taken into account in the CRM NOMAD
- The experimental data on non-statistical populations of  $\sigma$  and  $\pi$  components in fusion plasma were explained ...
- Impact of atomic models on the measurements of the q-profile is still ongoing...

## Acknowledgments

- Yu. Ralchenko
- D. Schultz
- E. Delabie
- R. Reimer
- W. Biel
- G. Bertschinger
- M von Hellermann
- R. Janev
- A. Urnov
- I. Bespamyatnov
- B. Rowan