The 1st IAEA Research Coordination Meeting on Data for Atomic Processes of Neutral Beams in Fusion Plasmas 19 – 21 June 2017, IAEA Headquarters, Vienna, Austria



# Experimental validation of atomic data for motional Stark effect diagnostics

J. Ko<sup>1,2</sup>, J. Chung<sup>1</sup>

<sup>1</sup>National Fusion Research Institute, Daejeon, Korea <sup>2</sup>University of Science and Technology, Daejeon, Korea





### Scope of the project

# Experimental validation of atomic data for motional Stark effect diagnostics

- High-precision measurements of beam-emission spectra from KSTAR discharges
- Development of a spectra analysis tool with a modulated interface for atomic data





## Calculated spectra are not always reproduce experimental observations.

## ... especially, when we are dealing with polarized light.









#### Faraday effect rotates the polarization angle.



### Background polarized light does exist in a tokamak.





### Background polarized light does exist in a tokamak.

![](_page_7_Figure_2.jpeg)

![](_page_7_Figure_3.jpeg)

#### Practically, multiple ion sources are used in NBI heating

![](_page_8_Picture_2.jpeg)

![](_page_8_Figure_3.jpeg)

#### Practically, multiple ion sources are used in NBI heating

![](_page_9_Picture_2.jpeg)

![](_page_9_Figure_3.jpeg)

### **Outline of the activities**

![](_page_10_Figure_1.jpeg)

11

### **Outline of the activities**

![](_page_11_Figure_1.jpeg)

12

### **Outline of the activities**

![](_page_12_Figure_1.jpeg)

## How the known pitch angles help the code validation?

![](_page_13_Figure_1.jpeg)

## Using ADAS for $I_{\perp}$ 's can reduce the systematic error

![](_page_14_Figure_1.jpeg)

2 ~ 3 % of systematic error can be reduced over the range of typical MST operating conditions, when compared with the analytic model\* which tends to overestimate |B|.

\*W. Mandl et al. Plasma Phys. Controlled Fusion 35, 1373 (1993) Ko et al, Rev. Sci. Instrum. 83, 10D513 (2012)

mon 19 jun 2017, j ko, iaea-crp-neutral, vienna, austria

K§TAR

![](_page_15_Figure_1.jpeg)

mon 19 jun 2017, j ko, iaea-crp-neutral, vienna, austria

- Operational since 2015
- Conventional polarimetric (photo-elastic modulation) method
- 25 channels with radial resolutions < 2 cm with ~ 10 msec interval
- Most of the systematic errors (Faraday, mirror reflections, geometric projections) have been calibrated.

Ko et al, Rev. Sci. Instrum. 88, 063505 (2017) Ko et al, Fusion Eng. Des. 109-111 (2016) 742-746 Chung et al, Rev. Sci. Instrum. 87, 11E503 (2016) Chung et al, Rev. Sci. Instrum. 85, 11D827 (2014)

![](_page_16_Figure_1.jpeg)

**NFR** mon 19 jun 2017, j ko, iaea-crp-neutral, vienna, austria

![](_page_17_Figure_1.jpeg)

![](_page_17_Picture_2.jpeg)

![](_page_18_Figure_1.jpeg)

mon 19 jun 2017, j ko, iaea-crp-neutral, vienna, austria

## Very simple spectral analysis already helping bandpass filter calibrations

#### • Filter tuning: 0.2 - 0.4 nm red-shift from +3pi

![](_page_19_Figure_2.jpeg)

mon 19 jun 2017, j ko, iaea-crp-neutral, vienna, austria

## Very simple spectral analysis already helping bandpass filter calibrations

- Quantitative analysis on lpf, cpf etc enables precise determination of the optimized amount of filter offset.
- Recently, this calibration has been performed from beam-into-gas injection tests (independent of the regular plasma run time).

![](_page_20_Figure_3.jpeg)

![](_page_20_Picture_4.jpeg)

### Direct derivation of q from pitch angle – q0 correlated with sawtooth events

![](_page_21_Figure_1.jpeg)

$$q = -\frac{\kappa a^2}{2R_0(R_X - R_0)\tan\gamma} \left\{ \left[ 1 - \frac{4(R_X - R_0)}{a^2}(R - R_X) \right]^{-1/2} - 1 \right\}$$
$$q_0 = -\frac{\kappa}{R_X} \left( \frac{\partial}{\partial R} \tan\gamma \right)_{R=R_X}^{-1}$$

R. Giannella et al, Rev. Sci. Instrum. 75 (2004) 4247-4250 C. Petty et al, Plasma Phys. Control. Fusion 47 (2005) 1077-1100

- q<sub>0</sub> evolving around 1
- q<sub>0</sub> < 1 occurs before the sawtooth crash (confirming the internal kink) and the current build-up (q<sub>0</sub> > 1) is slow after the crash.

![](_page_21_Picture_6.jpeg)

### Direct derivation of q from pitch angle – q0 correlated with sawtooth events

![](_page_22_Figure_1.jpeg)

### Flat (or near-hollow) q profiles with $q_0 \ge 1.5$ during steady ITB formation.

![](_page_23_Figure_1.jpeg)

### Flat (or near-hollow) q profiles with $q_0 \ge 1.5$ during steady ITB formation.

![](_page_24_Figure_1.jpeg)

### Flat (or near-hollow) q profiles with $q_0 \ge 1.5$ during steady ITB formation.

![](_page_25_Figure_1.jpeg)

### Time line for work plan

#### Year 1 (2017)

- Construction of self-calibrated high-precision ( $\Delta\lambda \leq$  0.05 nm) spectral diagnostic
- Development of a single-ion-source-injection fitting routine and interface for existing atomic data and modeling packages (such as NOMAD, ADAS etc)

#### Year 2 (2018)

- Introduction of the polarization-distortion effects to the spectral analysis suite
- Systematic comparison with the PEM-base MSE

#### Year 3 (2019)

- Evaluation and assessment of the atomic data used in the spectral analyses
- Optimization of the spectral analysis suite for ITER application

![](_page_26_Picture_10.jpeg)

![](_page_26_Picture_11.jpeg)