Deuterium retention and erosion of CLF-1 and CLAM steels exposed to deuterium plasma

<u>Peng Wang</u>¹, Li Qiao¹, Hanwen Zhang¹, Ran He¹, Chuan Xu², Engang Fu²

Lanzhou Institute of Chemical Physics, Lanzhou, China
 Department of Physics, Peking University, Beijing, China

- Deuterium and helium depth profile determined by glow discharge optical emission spectroscopy
- Retention and erosion of RAFM steel exposed to deuterium plasma
- Summary

Lanzhou institute of Chemical Physics, Chinese Academy of Sciences

 Irradiation & damage of lubricants in nuclear environment

PMI research in laboratory
Hydrogen isotope retention
Erosion of RAFM steel in fusion relevant plasma

Linear Experimental Plasma System (LEPS)

Parameters of LEPS plasma:

- Magnet field: 0.12-0.15 T
- Plasma beam diameter: 50 mm
- Ion flux: $2-5 \times 10^{21} \text{ m}^{-2} \text{s}^{-1}$
- Ion composition: mainly D_3^+
- Electron density: 10^{16} -- 10^{18} m⁻³
- Floating potential: -15 V

Working pressure: 0.5-1.0 Pa

emission spectroscopy

400 KV Implantation @ Xiamen University

2×1.7MV KV Accelerator **@ Peking University**

3MeV tandem accelerator @ IPP, Garching

Deuterium/helium retention measured by glow discharge optical emission

Yuji Hatano, Fus. Eng. Des, 2012

Chase N. Taylor, Nucl. Mater. Eng, 2018

Deuterium retention measured by GDOES using metal/D coating

Sputtering depth calibration using profile meter

Deuterium depth profile of **tungsten** samples exposed to deuterium plasma up to a fluence of 10^{26} D/m².

- A clear diffusion trend with respect to the implantation fluence
- Total D amount measured by two methods shows similar increase tendency
- ullet GDOES can be used to evaluate the deuterium depth profile up to 20 μ m

Deuterium depth profile of CLAM steel samples exposed to deuterium plasma

- No diffusion process similar with tungsten was found in steel, deuterium concentration decrease slightly with increasing incident fluence
- GDOES shows mismatch with TDS at higher fluence, due to low D concentration in steel

Helium retention measured by GDOES using implanted sample

Sample preparation

Helium depth profile and retention measured by GDOES

- Helium ions implanted tungsten was used to as calibration samples
- GDOES can be used to evaluate the helium depth profile
- the measurement low limitation up to 10⁻³ at.fr

	He ions implantation	D plasma exposure			
1 st sample	400KeV	38eV/D, 400 K, 1×10 ²⁵ D/m ²			
2 nd sample	100KeV, 200KeV, 300KeV, 400KeV	38eV/D, 400 K, 1×10 ²⁵ D/m ²			
3 rd sample	/	38eV/D, 400 K, 1×10 ²⁵ D/m ²			

- Deuterium and helium depth profile determined by glow discharge optical emission spectroscopy
- Retention and erosion of RAFM steel exposed to deuterium plasma
- Summary

- Reduced activation ferritic martensitic (RAFM) steel has been proposed to use as plasma-facing material in remote regions of the first wall.
- Blanket modules blankets are made of RAFM steel
- Technologically it would be much easier and less expensive
- H retention in RAFM steels is low, even lower than in W

Composition of various RAFM steel grades (in wt.%)

RAFM steel	Cr	W	Mn	V	Та	С	N	Р	S	Fe
CLF-1	8.5	1.55	0.6	0.3	0.1	0.12	0.02	0.003		Bal.
CLAM	9.11	1.52	0.41	0.19	0.2	0.12	0.002	0.003	0.003	Bal.

 $^{15 \}times 12 \times 1mm$

Sample treatment:

1st: Polishing with increasingly fine-grained SiC grinding paper, 2nd: Polishing with diamond suspension and water on the nap cloth, 3rd: heating in vacuum at 800 K for 1 hour

Morphology changes- fluence dependence

Deuterium plasma exposure: Energy: 150 eV/D, temperature: 450 K

Morphology changes- temperature dependence

 CLF-1 exposed to deuterium plasma: Development of surface topography is strongly affected by the exposure temperature.

• W concentration increased after deuterium plasma exposure but no continuous film formed at the surface, the thickness of the enrichment layer is less than 5 nm, in which W concentration is 4-5 times higher than bulk.

• W concentration increased after deuterium plasma exposure, the thickness of the enrichment layer is about 5-10 nm, in which W concentration is 8-10 times higher than bulk.

Sputtering yield of CLF-1 decreases with increasing of incident fluence, no clear saturation of yield at fluence of 10^{25} D/m². No obvious change of sputtering yield with increase of temperature to 900 K.

Composition of various RAFM steel grades (in wt.%)

RAFM steel	Cr	W	Mn	V	Та	С	Ν	Р	S	Fe
CLF-1	8.5	1.55	0.6	0.3	0.1	0.12	0.02	0.003		Bal.
CLAM	9.11	1.52	0.41	0.19	0.2	0.12	0.002	0.003	0.003	Bal.
EUROFER	9.0	1.1	0.40	0.20	0.12	0.11	0.03	0.004	0.003	Bal.
RUSFER	11.17	1.15	0.76	0.32	0.11	0.15	0.055	0.001	0.006	Bal.

 $15 \times 12 \times 1$ mm

Morphology and tungsten enrichment after deuterium plasma exposure

Different RAFM steel grades

Sputtering yield of CLF-1 and EUROPER steels is lower than pure Fe, clear decreases of yield of CLF-1 steels with increasing of incident fluence. No clear saturation of yield at fluence of 10^{25} D/m².

Deuterium releasing of different RAFM steel grades measured by TDS

Deuterium releasing of CLF-1 with different cut direction

Deuterium releasing from 400 to 800 K. Unusual deuterium thermal releasing from same kind of steel sample.

Deuterium retention of CLF-1 exposed at

Deuterium retention in different RAFM

different temperature

steel as function of fluence

Total deuterium retention decrease in CLF-1 with the increasing temperature Total deuterium retention in different RAFM steel exposed to the same batch show a clear decrease trend

- A deuterium and helium depth profile measurement method was developed on GDOES based on codeposited and implanted samples
- He pre-implanted clear increases the deuterium retention by increasing defects and promoting diffusion
- Surface enrichment of W and reduction of sputter yield were experimentally proven, but the reduction possibly strongly influenced by surface morphology development
- Total deuterium retention in different RAFM steel exposed to the same batch show a clear decrease trend

Thanks for your attention!