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Various	RAFM	steel	samples	were	examined.		
Thank	you	for	providing	us	with	the	samples.		

Cr	 W	 V	 Ta	 C	 Mn	 Si	 Ni	

CLF-1	 8.5	 1.5	 0.25	 0.1	 0.1	 0.5	 -	 -	

Eurofer	 9	 1.1	 0.2	 0.1	 0.1	 0.4	 -	 -	

F82H	 8	 2	 0.2	 -	 0.1	 0.2	 0.1	 -	

Rusfer	 11	 1.1	 0.25	 0.1	 0.15	 0.7	 0.3	 -	

P92	 8.5-9.5	 1.5-2	 0.15-0.25	 -	 0.07-0.13	 0.3-0.6	 ≤	0.5	 ≤	0.4	

u  Chemical	composition	(wt%)	of	the	RAFM	steels	as	well	as	commercially	available	P92	FM	steel	

Fe:	Balance 

u  Outgassed	at	T	=	500	C	(773	K)	for	1	hour	before	plasma	exposure 
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Sample	size	
(mm)	

Exposed	area	
(mm)	 Thickness	(mm)	 Surface	

CLF-1	 12x10	 10x8	 1.0	 Mirror-polished	

Eurofer	 15x12	 12x9.2	 0.65	 Mirror-polished	

F82H	 φ25	 φ22	 1.9	 Mirror-polished	

Rusfer	 10x8.5	 7.5x6.5	 0.57	 As-received	
(not	polished)	
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Plasma	exposures	to	the	RAFM	steels	were	conducted	
in	PISCES-A	at	UCSD.	

1.  Pure	D	plasma	exposure	
2.  Sequential	pure	He	and	pure	D	plasma	exposure	
3.  Simultaneous	D	and	He	mixed	plasma	exposure 

u Three	types	of	plasma	exposure	were	made: 

u Plasma	conditions:	
Ø  φD	~	1e25	m-2	(~2e23-4e25	m-2	for	

φD	scan)	
Ø  φHe	~	1e24	m-2,	0.5e24	m-2	

Ø  cHe+	~	10%,	5%	
Ø  Ts	~	100	C	(373	K),	250	C	(523	K)	
Ø  Ei	~	100	eV	
Ø  Γi	~	1.5-2e21	m-2s-1	

ü  The	plasma	parameters	were	
measured	with	a	reciprocating	
single	Langmuir	probe	system.		

ü  cHe+	was	measured	with	a	
spectroscopic	technique.	

ü  Ei	was	controlled	with	target	
biasing. 
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Before	and	after	plasma	exposure,	RAFM	steel	samples	
were	analyzed	with	several	techniques.	

u  Thermal	desorption	spectroscopy	(TDS):	D	(as	well	as	He)	retention	
Ø  Both	HD	and	D2	signals	were	taken	into	account.	
Ø  D2	and	He	signals	were	resolved	with	a	high	resolution	RGA.	
Ø  TDS	temperature:	~	300	–	1130	K	
Ø  0.25	K/s	ramping	rate	

u  Focused	ion	beam	(FIB)-scanning	electron	microscopy	(SEM):	Sample	
preparation	for	TEM	and	surface	observation	

u  Transmission	electron	microscopy	(TEM)	w/	Energy	dispersive	X-ray	
spectroscopy	(EDX):		Surface	and	internal	microstructure/composition	

u  Sputter-Auger	electron	spectroscopy	(AES):		
Depth	profile	of	near-surface	composition	

u  Microbalance:	sample	mass	loss	
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FIB-SEM	(HITACHI	NB5000)	
@NIFS 

TEM	(JEOL	JEM-2800)@NIFS 

TDS@UCSD Sputter-AES@UCSD 

Microbalance	
@UCSD 
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D	retention	caused	by	pure	D	plasma	exposure	depends	
strongly	on	the	type	of	RAFM	steels.		

u Up	to	~30	x	difference	between	CLF-1	and	F82H	even	with	the	same	
plasma	exposure	condition	as	well	as	the	similar	nominal	composition. 
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A	higher	Cr	content	in	the	near-surface	region	may	lead	to	
the	higher	D	retention.	Formation	of	Cr-D	or	Cr-O-D? 
u  Sputter-AES	analysis	of	unexposed	surfaces	shows	“less	Fe	and	more	Cr”	for	CLF-1	and	Rusfer,	having	a	

higher	D	retention	caused	by	pure	D	plasma	exposure.		
u  More	Cr	than	Fe	diffuse	to	the	surface	during	outgassing	at	500	C	before	plasma	exposure.	
u  After	pure	D	plasma	exposure,	near-surface	Cr	concentration	for	CLF-1	is	still	higher	than	that	for	F82H. 

0

20

40

60

80

100

C
r c

on
ce

nt
ra

tio
n 

(%
)

CLF-1

Unexposed

Eurofer
F82H

Rusfer

0

20

40

60

80

100

0 2 4 6 8 10 12 14

Fe
 c

on
ce

nt
ra

tio
n 

(%
)

Depth (nm)

CLF-1

F82H

Pure D
φD ~ 1e25 m-2

Ei ~ 100 eV
Ts ~ 373 K

0

20

40

60

80

100

Fe
 c

on
ce

nt
ra

tio
n 

(%
)

CLF-1

Unexposed
Eurofer

F82H

Rusfer

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14

C
r c

on
ce

nt
ra

tio
n 

(%
)

Depth (nm)

CLF-1

F82H

Pure D
φD ~ 1e25 m-2

Ei ~ 100 eV
Ts ~ 373 K

0

5

10

15

20

0 2 4 6 8 10 12 14

W
 c

on
ce

nt
ra

tio
n 

(%
)

Depth (nm)

CLF-1

F82H

Pure D
φD ~ 1e25 m-2

Ei ~ 100 eV
Ts ~ 373 K

0

5

10

15

20

W
 c

on
ce

nt
ra

tio
n 

(%
)

CLF-1

Unexposed

Eurofer F82H Rusfer



PISCES	

9 

u Material	dependence	of	D	retention	caused	by	pure	D	plasma	exposure	
Ø  Strong	material	dependence	

u Fluence	dependence	of	D	retention	caused	by	pure	D	plasma	exposure	
Ø  Counter-intuitive	fluence	dependence	

u He	effect	on	D	retention	
Ø  Reduction	of	D	retention	

u Analysis	of	TDS	spectra	
Ø  Low	and	high	temperature	D	desorption	components	

u He	retention	
Ø  Weak	material	dependence	

u Microstructures	in	the	near-surface	region	
Ø  Formation	of	high-density	He	bubble	layer	

u Surface	morphology	and	composition	
Ø  Formation	of	cones	and	W	surface	enrichment 

Contents	



PISCES	

10 

The	counter-intuitive	fluence	dependence	of	D	retention	
is	observed	also	in	PISCES-A. 

L.	Qiao	et	al.,	Phys.	Scr.	2017 

u  Two	previously	published	studies	
reported	a	decrease	in	D	retention	
with	increasing	the	fluence.	 

CLF-1 

N.	Ashikawa	et	al.,	FED2016 

u The	D	retention	decreases	with	increasing	
the	D	fluence	at	the	lower	fluence	range.	

u  It	seems	that	the	D	retention	slightly	
increases	with	increasing	the	D	fluence	at	
the	higher	fluence	range.	 
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The	counter-intuitive	fluence	dependence	can	also	be	
explained	by	the	Cr	content	in	the	near-surface	region. 
u  A	Cr-rich	surface	layer	is	formed	as	a	result	of	the	Cr	diffusion	to	the	surface	during	outgassing	at	

500	C	before	plasma	exposure.		
u  As	the	D	fluence	increases	during	plasma	exposure,	the	Cr-rich	surface	layer	is	progressively	

sputtered,	and	then	the	Cr	concentration	decreases.	Correspondingly,	the	D	retention	decreases.		
u  At	a	certain	D	fluence,	where	the	Cr-rich	surface	layer	is	removed,	the	reduction	of	D	retention	

stops,	and	the	D	retention	increases	with	increasing	the	D	fluence.	 
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Two	contradicting	results	have	been	reported	on	He	
effect	on	D	retention	in	RAFM	steels.		

K.	Yakushiji	et	al.,	Phys.	Scr.	T167	(2016)	014067 
M.	Rasinski	et	al.,	Phys.	Scr.	T170	(2017)	014036 

Ø  D	retention	slightly	decreases	
with	He	admixture. 

Ø  D	retention	increases	with	He	
admixture	by	a	factor	of	>	2. 

φD	=	1e24	m-2	

Ts	~	500-818	K	
Ei	~	1	keV	
cHe	~	0.5% 

HiFIT	at	Osaka	Univ. 

PSI-2 
φD	~	1e26	m-2	

Ts	~	470-500	K	
Ei	~	60-70	eV	
cHe	~	5%,	10% 

F82H 
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TDS NRA 

(Outgas	at	723	K	for	1	h) (Outgas	at	1000	K	for	1	h) 
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CLF-1:	D	retention	is	reduced	with	He	by	a	factor	of	~10	
at	Ts	~	373	K	and	~2	at	Ts	~	523	K.	

u Addition	of	He,	regardless	of	
sequential	or	simultaneous	
exposure,	leads	to	a	reduction	
of	D	retention.			

u Ts	dependence:	
D	retention,	especially	for	
the	pure	D	case,	significantly	
decreases	with	increasing	Ts	
from	373	K	to	523	K. 
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Eurofer:	D	retention	decreases	with	admixture	of	He,	but	
the	reduction	factor	is	only	~2	with	10%	He.	

u D	retention	decreases	with	
increasing	the	fraction	of	He	

u No	increase	in	D	retention	was	
observed	with	admixture	of	
He,	contradicting	Rasinski	et	
al.,	(2017).	 
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F82H:	Only	a	slight	decrease	in	D	retention	was	observed	
with	admixture	of	He.	

u  It	seems	to	be	consistent	with	
Yakushiji	et	al.	(2016),	which	
also	shows	a	slight	decrease	in	
D	retention	with	He	mixture.	
Discussed	further	later. 
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Rusfer:	D	retention	is	reduced	with	He	by	a	factor	of	~2	
for	seq.	exposure	and	~6	for	simul.	exposure.	

u The	reduction	of	D	retention	is	
smaller	compared	to	CLF-1,	
especially	for	the	sequential	
exposure	case.	

u  In	the	simultaneous	
exposures,	D	retention	
decreases	with	increasing	the	
fraction	of	He	(5%	à	10%),	
which	is	consistent	with	
Eurofer.	 
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Low	temperature	D	desorption	is	more	sensitive	to	
admixture	of	He	and	the	type	of	RAFM	steels.	

Rusfer-1: Pure D
Rusfer-2: Seq. He -> D
Rusfer-3: Simul. D+10%He
Rusfer-4: Simul. D+5%He

φD ~ 1e25 m-2

φHe ~ 0.5e24 for Rusfer-4

φHe ~ 1e24 m-2 for Rusfer-2, 3
Ts ~ 373 K
Ei ~ 100 eV
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Rusfer-4: Simul. D+5%He

Temperature [K]
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φHe ~ 0.5e24 for Rusfer-4

φHe ~ 1e24 m-2 for Rusfer-2, 3
Ts ~ 373 K
Ei ~ 100 eV

CLF-1 Rusfer 

Eurofer F82H 

u D	desorption	can	be	separated	into	
low	(<	600	K)	and	high	(>	600	K)	
temperature	components.	

u Low	temperature	D	desorption	is	
more	sensitive	to		
(1)	admixture	of	He	and		
(2)	the	type	of	RAFM	steels,		

					compared	to	high	temperature		
					desorption.	
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CLF-1:	Ts	~	373	K CLF-1:	Ts	~	523	K 

In	addition,	low	temperature	D	desorption	is	more	
sensitive	to	the	sample	temperature.	
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u Low	temperature	D	desorption	nearly	disappears	at	a	higher	Ts	~	523	K.	
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Our	result	at	higher	Ts	~	523	K	seems	to	be	consistent	
with	Yakushiji	et	al.,	at	Ts	~	500-818	K.		

Total	D	retention	
~	4.0e19	m-2 

Total	D	retention	
~	2.3e19	m-2 

K.	Yakushiji	et	al.,	Phys.	Scr.	T167	(2016)	014067 

φD	=	1e24	m-2	

Ts	~	500-818	K	
Ei	~	1	keV	
cHe	~	0.5% 

HiFIT	at	Osaka	Univ. 

F82H TDS 

u  D	retention	obtained	only	from	HD	signal,	by	
Yakushiji	et	al.,	should	be	close	to	total	D	retention	
because	of	the	high	Ts	~	500-818	K.	

u  Reduction	of	D	retention	with	He	is	consistent.	
u  Note	that	D	retention	decreases	with	Ts	from	373	to	

523	K	in	PISCES-A,	while	it	increases	with	Ts	from	500	
to	818	K. 

u  D	retention	is	dominated	by	HD	release	
(~90%)	at	a	higher	Ts	~	523	K 
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Ø  Low	and	high	temperature	D	desorption	components	

u He	retention	
Ø  Weak	material	dependence	

u Microstructures	in	the	near-surface	region	
Ø  Formation	of	high-density	He	bubble	layer	

u Surface	morphology	and	composition	
Ø  Formation	of	cones	and	W	surface	enrichment 
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The	material	dependence	of	He	retention	in	RAFM	steels	
is	weak	unlike	D	retention.		

u He	retention	for	sequential	exposure	(He	à	D)	is	more	
than	10x	lower	than	that	for	simultaneous	D+He	exposure,	
while	the	incident	He	fluence	is	the	same	for	both	cases.	
Ø  Discussed	later.	

u He	retention	saturates	already	at	φHe	~	0.5e24	m-2.	
u The	Ts	dependence	of	He	retention	is	weak.	 
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u Material	dependence	of	D	retention	caused	by	pure	D	plasma	exposure	
Ø  Strong	material	dependence	

u Fluence	dependence	of	D	retention	caused	by	pure	D	plasma	exposure	
Ø  Counter-intuitive	fluence	dependence	

u He	effect	on	D	retention	
Ø  Reduction	of	D	retention	

u Analysis	of	TDS	spectra	
Ø  Low	and	high	temperature	D	desorption	components	

u He	retention	
Ø  Weak	material	dependence	

u Microstructures	in	the	near-surface	region	
Ø  Formation	of	high-density	He	bubble	layer	

u Surface	morphology	and	composition	
Ø  Formation	of	cones	and	W	surface	enrichment 
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TEM	observations	reveal	that	high-density	He	bubble	layer	is	
formed	in	the	near-surface	region	only	for	a	sample	exposed	to	
simultaneous	D+He	mixed	plasma.	

CLF-1-1B:	Pure	D,	373	K CLF-1-2B:	Seq.	He->D,	373	K CLF-1-3B:	Simul.	D+He,	373	K 

~15	nm 

u A	significant	surface	morphology	change	(cone	structures)	is	seen	only	for	a	
sample	exposed	to	simultaneous	D+He	mixed	plasma.	

u He	bubbles	are	also	seen	inside	the	cones.	
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CLF-1-3B:	Simul.	D+He,	373	K 

~15	nm 

High-density	He	bubbles	are	considered	to	reduce	D	
retention	in	the	same	way	as	for	W.	 

u High-density	He	bubbles	can	
decrease	the	diffusion	of	D	into	the	
bulk	and/or	can	increase	the	
diffusion	to	the	surface.	

u Note	that	Rasinski	et	al.,	(2017)	also	
observed	He	bubbles,	but	D	retention	
increased	with	He	admixture.	 
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CLF-1-2B:	Seq.	He->D,	373	K 

Why	is	D	retention	reduced	without	high-density	He	
bubbles	for	the	sequential	(He	->D)	exposure	case?	 

u  A	He	bubble	layer	(~15	nm)	should	be	
formed	during	pure	He	plasma	phase.	

u  But	the	layer	can	be	sputtered	during	pure	
D	plasma	phase.		
Ø  Erosion	layer	thickness	during	pure	D	

phase	is	calculated	to	be	~70	nm	from	
mass	loss	in	pure	D	plasma	exposure	
(CLF-1-1).	

Ø  Consistent	with	the	low	He	retention	
u  The	He	bubble	layer	does	not	exist	during	

the	entire	pure	D	phase.	
u  But	the	D	retention	is	reduced.			 
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The	reduction	of	D	retention	for	seq.	(He	->	D)	case	may	
be	caused	mainly	by	the	lower	Cr	concentration. 
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1.  Before	plasma	exposure,	Cr	
is	dominant	in	the	surface	
(<	5	nm)	due	to	outgassing	
at	500	C.	

2.  During	the	pure	He	plasma	
exposure	phase,	Fe	and	Cr	
atoms	in	the	near-surface	
are	preferentially	
sputtered.	
à	W	surface	enrichment	 

3.  The	Cr	concentration	for	seq.	
He	->	D	case	is	lower	than	
that	for	pure	D	case.	
à	Reduction	of	D	retention	 

Note	that	the	Cr	concentration	for	
simul.	D+He	case	is	comparable	to	
that	for	pure	D	case.	
Ø  Reduction	of	D	retention	

caused	by	He	bubbles 
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u Material	dependence	of	D	retention	caused	by	pure	D	plasma	exposure	
Ø  Strong	material	dependence	

u Fluence	dependence	of	D	retention	caused	by	pure	D	plasma	exposure	
Ø  Counter-intuitive	fluence	dependence	

u He	effect	on	D	retention	
Ø  Reduction	of	D	retention	

u Analysis	of	TDS	spectra	
Ø  Low	and	high	temperature	D	desorption	components	

u He	retention	
Ø  Weak	material	dependence	

u Microstructures	in	the	near-surface	region	
Ø  Formation	of	high-density	He	bubble	layer	

u Surface	morphology	and	composition	
Ø  Formation	of	cones	and	W	surface	enrichment 
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Larger	structures	(up	to	~200	nm)	exist	on	the	surface	of	
all	the	cases,	in	addition	to	smaller	cones	on	CLF-1-3B. 

CLF-1-1B:	Pure	D,	373	K CLF-1-2B:	Seq.	He->D,	373	K CLF-1-3B:	Simul.	D+He,	373	K 
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CLF-1-2B:	Seq.	He->D,	373	K 

TEM/EDX	observations	reveal	that	they	are	larger	cone	
structures	with	W	on	the	tip.	 

FIB	cut 
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CLF-1-3B:	Simul.	D+He,	373	K 

FIB	cut 

TEM/EDX	observations	reveal	that	they	are	larger	cone	
structures	with	W	on	the	tip.	 
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Both	small	&	large	cones	exist,	depending	maybe	on	the	
size	&	amount	of	W	clusters.	Small	cones	are	dominant. 

CLF-1-3B:	Simul.	D+He,	373	K 
Large	cones 

Small	cones 

The	cone	height	
is	roughly	
consistent	with	
the	erosion	layer	
thickness	of	~160	
nm,	estimated	
from	mass	loss	
(assuming	a	flat	
surface) 

200	nm 

100	nm 
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Sputter-AES	analysis	shows	the	W	surface	enrichment,	
particularly,	after	He-containing	plasma	exposure.	 
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*The	escape	depth	of	electrons	(depth	
resolution	of	AES	)	is	<	5nm.	 
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u W	surface	enrichment	after	pure	D	plasma	exposure	is	less	than	after	He-
containing	plasma	exposure,	which	is	consistent	with	less	sputtering	for	pure	D.		

u The	depth	profile	of	the	W	concentration	clearly	extends	to	a	deeper	region	for	
the	simultaneous	D+He	mixed	plasma	exposure	case.	 
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TEM/EDX	analysis	also	observes	a	W-rich	surface	layer	
after	plasma	exposure. 

CLF-1-1B:	Pure	D,	373	K CLF-1-2B:	Seq.	He->D,	373	K CLF-1-3B:	Simul.	D+He,	373	K 

~5	nm 

u  The	higher	W	concentration	
in	a	deeper	region	measured	
with	sputter-AES	is	caused	
by	the	cones.	

u  A	Cr-rich	surface	layer	is	
clearly	observed	for	an	
unexposed	surface.	 

u EDX	2D	mapping	of	W	in	the	near-surface	region 

CLF-1	unexposed CLF-1	unexposed 
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Conclusion:	Cr	content	and	He	bubbles	in	the	near-surface	
significantly	influence	D	retention	in	the	RAFM	steels. 

CLF-1-3B:	Simul.	D+He,	373	K 

~15	nm 

u A	higher	Cr	concentration	in	the	near-surface	region	leads	to	a	higher	D	retention.	
		
u The	D	retention	is	reduced	with	a	high-density	He	bubble	layer	formed	in	the	near-

surface	region.		

1e+19

1e+20

1e+21

D
 re

te
nt

io
n 

(m
-2

)

φD ~ 1e25 m-2

Ts ~ 373 K
Ei ~ 100 eV

Pure D

CLF-1
Rusfer

Eurofer
F82H

Simul. D+10%He

CLF-1

Rusfer

Eurofer
F82H

φD ~ 1e25 m-2

φHe ~ 1e24 m-2

Ts ~ 373 K
Ei ~ 100 eV

High-density	He	
bubble	layer 

Cones 

u Future	work:		
Ø  Impurity	(Ne,	Ar,	and	N2)	effect	on	D	retention	
Ø  In-situ	LIBS	analysis	of	surface	composition	evolution	“during”	plasma	exposure	 
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Additional	slides 
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Low	temperature	desorption	is	dominated	by	D2,	while	
high	temperature	one	is	dominated	by	HD.	
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The	W	surface	enrichment	is	enhanced	with	increasing	
the	fluence	due	to	more	preferential	sputtering.	
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After	simul.	D+He	mixed	plasma	exposure,	CLF-1	shows	
higher	W	and	lower	Fe	concentrations	than	F82H.		

u Seq.	He	à	D	plasma	exposure	led	to	the	similar	composition	between	CLF-1	and	F82H. 


