IAEA 3rd RCM of CRP on Plasma-Wall Interaction with Reduced-Activation Steel Surfaces in Fusion Devices, IAEA Headquarters, Vienna, Austria, March 25-27, 2019

Effect of He on D retention in various RAFM steels

Daisuke Nishijima^a, Masayuki Tokitani^b, Daisuke Nagata^b, Marlene Patino^a, and Russ P. Doerner^a

^aCenter for Energy Research, University of California, San Diego, La Jolla, CA, USA ^bNational Institute for Fusion Science, Toki, Gifu, Japan

PISCES

Material dependence of D retention caused by pure D plasma exposure

Strong material dependence

Fluence dependence of D retention caused by pure D plasma exposure

Counter-intuitive fluence dependence

He effect on D retention

Reduction of D retention

Analysis of TDS spectra

Low and high temperature D desorption components

He retention

Weak material dependence

Microstructures in the near-surface region

Formation of high-density He bubble layer

Surface morphology and composition

Formation of cones and W surface enrichment

Various RAFM steel samples were examined. Thank you for providing us with the samples.

- PISCES

	Sample size (mm)	Exposed area (mm)	Thickness (mm)	Surface
CLF-1	12x10	10x8	1.0	Mirror-polished
Eurofer	15x12	12x9.2	0.65	Mirror-polished
F82H	φ25	φ22	1.9	Mirror-polished
Rusfer	10x8.5	7.5x6.5	0.57	As-received (not polished)

Outgassed at T = 500 C (773 K) for 1 hour before plasma exposure

Chemical composition (wt%) of the RAFM steels as well as commercially available P92 FM steel

	Cr	W	V	Та	С	Mn	Si	Ni	
CLF-1	8.5	1.5	0.25	0.1	0.1	0.5	-	-	
Eurofer	9	1.1	0.2	0.1	0.1	0.4	-	-	
F82H	8	2	0.2	-	0.1	0.2	0.1	-	
Rusfer	11	1.1	0.25	0.1	0.15	0.7	0.3	-	
P92	8.5-9.5	1.5-2	0.15-0.25	-	0.07-0.13	0.3-0.6	≤ 0.5	≤ 0.4	
	Fe: Balance								

3

Plasma exposures to the RAFM steels were conducted in PISCES-A at UCSD.

PISCES

- Three types of plasma exposure were made:
 - 1. Pure D plasma exposure
 - 2. Sequential pure He and pure D plasma exposure
 - 3. Simultaneous D and He mixed plasma exposure

Plasma conditions:

- $\Rightarrow \phi_{He} \sim 1e24 \text{ m}^{-2}, 0.5e24 \text{ m}^{-2}$
- ➤ c_{He+} ~ 10%, 5%
- ➤ T_s ~ 100 C (373 K), 250 C (523 K)
- ➢ E_i ~ 100 eV
- > $\Gamma_{\rm i} \simeq 1.5 2e21 \,{\rm m}^{-2}{\rm s}^{-1}$
- ✓ The plasma parameters were measured with a reciprocating single Langmuir probe system.
- ✓ c_{He+} was measured with a spectroscopic technique.
- E_i was controlled with target
 biasing.

Before and after plasma exposure, RAFM steel samples were analyzed with several techniques.

- Thermal desorption spectroscopy (TDS): D (as well as He) retention
 - > Both HD and D_2 signals were taken into account.
 - \blacktriangleright D₂ and He signals were resolved with a high resolution RGA.
 - TDS temperature: ~ 300 1130 K
 - > 0.25 K/s ramping rate
- Focused ion beam (FIB)-scanning electron microscopy (SEM): Sample preparation for TEM and surface observation
- Transmission electron microscopy (TEM) w/ Energy dispersive X-ray spectroscopy (EDX): Surface and internal microstructure/composition
- Sputter-Auger electron spectroscopy (AES):
 Depth profile of near-surface composition
- Microbalance: sample mass loss

Microbalance

@UCSD

PISCES

TEM (JEOL JEM-2800)@NIFS

PISCES

Material dependence of D retention caused by pure D plasma exposure

Strong material dependence

Fluence dependence of D retention caused by pure D plasma exposure

- Counter-intuitive fluence dependence
- ♦ He effect on D retention
 - Reduction of D retention
- Analysis of TDS spectra
 - Low and high temperature D desorption components
- He retention
 - > Weak material dependence
- Microstructures in the near-surface region
 - Formation of high-density He bubble layer
- Surface morphology and composition
 - Formation of cones and W surface enrichment

D retention caused by pure D plasma exposure depends strongly on the type of RAFM steels.

- PISCES
- Up to ~30 x difference between CLF-1 and F82H even with the same plasma exposure condition as well as the similar nominal composition.

A higher Cr content in the near-surface region may lead to the higher D retention. Formation of Cr-D or Cr-O-D?

- Sputter-AES analysis of unexposed surfaces shows "less Fe and more Cr" for CLF-1 and Rusfer, having a higher D retention caused by pure D plasma exposure.
- More Cr than Fe diffuse to the surface during outgassing at 500 C before plasma exposure.
- After pure D plasma exposure, near-surface Cr concentration for CLF-1 is still higher than that for F82H.

PISCES

Material dependence of D retention caused by pure D plasma exposure
 Strong material dependence

• Fluence dependence of D retention caused by pure D plasma exposure

- Counter-intuitive fluence dependence
- He effect on D retention
 - Reduction of D retention
- Analysis of TDS spectra
 - Low and high temperature D desorption components

He retention

- > Weak material dependence
- Microstructures in the near-surface region
 - Formation of high-density He bubble layer
- Surface morphology and composition
 - Formation of cones and W surface enrichment

The counter-intuitive fluence dependence of D retention is observed also in PISCES-A.

PISCES

Two previously published studies reported a decrease in D retention with increasing the fluence.

- The D retention decreases with increasing the D fluence at the lower fluence range.
- It seems that the D retention slightly increases with increasing the D fluence at the higher fluence range.

The counter-intuitive fluence dependence can also be explained by the Cr content in the near-surface region.

- PISCES
- A Cr-rich surface layer is formed as a result of the Cr diffusion to the surface during outgassing at 500 C before plasma exposure.
- As the D fluence increases during plasma exposure, the Cr-rich surface layer is progressively sputtered, and then the Cr concentration decreases. Correspondingly, the D retention decreases.
- At a certain D fluence, where the Cr-rich surface layer is removed, the reduction of D retention stops, and the D retention increases with increasing the D fluence.

Material dependence of D retention caused by pure D plasma exposure
 Strong material dependence

Fluence dependence of D retention caused by pure D plasma exposure
 Counter-intuitive fluence dependence

♦ He effect on D retention

Reduction of D retention

Analysis of TDS spectra

Low and high temperature D desorption components

He retention

> Weak material dependence

Microstructures in the near-surface region

- Formation of high-density He bubble layer
- Surface morphology and composition
 - Formation of cones and W surface enrichment

PISCES

Two contradicting results have been reported on He effect on D retention in RAFM steels.

PISCES

D retention slightly decreases with He admixture.

Figure 3. Integrated m/q = 3 signals from figure 2 as function of irradiation temperature which clearly shows a systematic decrease in retention due to He.

K. Yakushiji et al., Phys. Scr. T167 (2016) 014067

(Outgas at 1000 K for 1 h)

Figure 7. Integral D retention up to 8 μ m with respect to plasma composition, measured by <u>NRA</u> using a 4.5 MeV ³He beam.

M. Rasinski et al., Phys. Scr. T170 (2017) 014036

(Outgas at 723 K for 1 h)

CLF-1: D retention is reduced with He by a factor of ~10 at T_s ~ 373 K and ~2 at T_s ~ 523 K.

- Addition of He, regardless of sequential or simultaneous exposure, leads to a reduction of D retention.
 - T_s dependence: D retention, especially for the pure D case, significantly decreases with increasing T_s from 373 K to 523 K.

Center for Energy Research

Eurofer: D retention decreases with admixture of He, but the reduction factor is only ~2 with 10% He.

Center for Energy Rese

F82H: Only a slight decrease in D retention was observed with admixture of He.

 It seems to be consistent with Yakushiji et al. (2016), which also shows a slight decrease in D retention with He mixture.
 Discussed further later.

Center for Energy Research

Rusfer: D retention is reduced with He by a factor of ~2 for seq. exposure and ~6 for simul. exposure.

17

Center for Energy

Material dependence of D retention caused by pure D plasma exposure
 Strong material dependence

Fluence dependence of D retention caused by pure D plasma exposure
 Counter-intuitive fluence dependence

He effect on D retention

Reduction of D retention

Analysis of TDS spectra

Low and high temperature D desorption components

He retention

Weak material dependence

Microstructures in the near-surface region

- Formation of high-density He bubble layer
- Surface morphology and composition
 - Formation of cones and W surface enrichment

PISCES

Low temperature D desorption is more sensitive to admixture of He and the type of RAFM steels.

19

Center for Energy Research

In addition, low temperature D desorption is more sensitive to the sample temperature.

PISCES

Our result at higher T_s ~ 523 K seems to be consistent with Yakushiji et al., at T_s ~ 500-818 K.

PISCES

 D retention is dominated by HD release (~90%) at a higher T_s ~ 523 K

- D retention obtained only from HD signal, by Yakushiji et al., should be close to total D retention because of the high T_s ~ 500-818 K.
- Reduction of D retention with He is consistent.
- Note that D retention decreases with T_s from 373 to 523 K in PISCES-A, while it increases with T_s from 500 to 818 K.

Figure 3. Integrated m/q = 3 signals from figure 2 as function of irradiation temperature which clearly shows a systematic decrease in retention due to He.

K. Yakushiji et al., Phys. Scr. T167 (2016) 014067

21

– PISCES

- Material dependence of D retention caused by pure D plasma exposure
 Strong material dependence
- Fluence dependence of D retention caused by pure D plasma exposure
 Counter-intuitive fluence dependence
- He effect on D retention
 - Reduction of D retention
- Analysis of TDS spectra
 - Low and high temperature D desorption components

He retention

- Weak material dependence
- Microstructures in the near-surface region
 - Formation of high-density He bubble layer
- Surface morphology and composition
 - Formation of cones and W surface enrichment

The material dependence of He retention in RAFM steels is weak unlike D retention.

PISCES -

• The T_s dependence of He retention is weak.

Temperature [K]

PISCES

- Material dependence of D retention caused by pure D plasma exposure
 Strong material dependence
- Fluence dependence of D retention caused by pure D plasma exposure
 Counter-intuitive fluence dependence
- He effect on D retention
 - Reduction of D retention
- Analysis of TDS spectra
 - Low and high temperature D desorption components
- He retention
 - > Weak material dependence

Microstructures in the near-surface region

- Formation of high-density He bubble layer
- Surface morphology and composition
 - Formation of cones and W surface enrichment

TEM observations reveal that high-density He bubble layer is formed in the near-surface region only for a sample exposed to simultaneous D+He mixed plasma.

A significant surface morphology change (cone structures) is seen only for a sample exposed to simultaneous D+He mixed plasma.

He bubbles are also seen inside the cones.

High-density He bubbles are considered to reduce D retention in the same way as for W.

PISCES

Center for Energy Research

Why is D retention reduced without high-density He bubbles for the sequential (He ->D) exposure case?

PISCES

 A He bubble layer (~15 nm) should be formed during pure He plasma phase.
 But the layer can be sputtered during pu

- But the layer can be sputtered during pure D plasma phase.
 - Erosion layer thickness during pure D phase is calculated to be ~70 nm from mass loss in pure D plasma exposure (CLF-1-1).
 - Consistent with the low He retention
- The He bubble layer does not exist during the entire pure D phase.
- But the D retention is reduced.

UCSD

The reduction of D retention for seq. (He -> D) case may be caused mainly by the lower Cr concentration.

PISCES

- Before plasma exposure, Cr is dominant in the surface (< 5 nm) due to outgassing at 500 C.
- 2. During the pure He plasma exposure phase, Fe and Cr atoms in the near-surface are preferentially sputtered.
 - \rightarrow W surface enrichment

- The Cr concentration for seq.
 He -> D case is lower than that for pure D case.
 - \rightarrow Reduction of D retention

Note that the Cr concentration for simul. D+He case is comparable to that for pure D case.

Reduction of D retention caused by He bubbles

PISCES

- Material dependence of D retention caused by pure D plasma exposure
 Strong material dependence
- Fluence dependence of D retention caused by pure D plasma exposure
 Counter-intuitive fluence dependence
- He effect on D retention
 - Reduction of D retention
- Analysis of TDS spectra
 - Low and high temperature D desorption components
- He retention
 - Weak material dependence
- Microstructures in the near-surface region
 - Formation of high-density He bubble layer

Surface morphology and composition

Formation of cones and W surface enrichment

Larger structures (up to ~200 nm) exist on the surface of all the cases, in addition to smaller cones on CLF-1-3B.

PISCES

TEM/EDX observations reveal that they are larger cone structures with W on the tip.

TEM/EDX observations reveal that they are larger cone structures with W on the tip.

Both small & large cones exist, depending maybe on the size & amount of W clusters. Small cones are dominant. **PISCES**

Center for Energy Research

the erosion layer thickness of ~160 nm, estimated from mass loss (assuming a flat surface)

is roughly

Sputter-AES analysis shows the W surface enrichment, particularly, after He-containing plasma exposure.

PISCES

Center for Energy

- W surface enrichment after pure D plasma exposure is less than after Hecontaining plasma exposure, which is consistent with less sputtering for pure D.
- The depth profile of the W concentration clearly extends to a deeper region for the simultaneous D+He mixed plasma exposure case.

TEM/EDX analysis also observes a W-rich surface layer after plasma exposure.

PISCES

Center for Energy

EDX 2D mapping of W in the near-surface region

100 nm

UCS

WМ

Conclusion: Cr content and He bubbles in the near-surface significantly influence D retention in the RAFM steels.

- ◆ A higher Cr concentration in the near-surface region leads to a higher D retention.
- The D retention is reduced with a high-density He bubble layer formed in the nearsurface region.
- Future work:
 - Impurity (Ne, Ar, and N₂) effect on D retention
 - In-situ LIBS analysis of surface composition evolution "during" plasma exposure

PISCES

Additional slides

Low temperature desorption is dominated by D_2 , while high temperature one is dominated by HD.

PISCES

The W surface enrichment is enhanced with increasing the fluence due to more preferential sputtering.

After simul. D+He mixed plasma exposure, CLF-1 shows higher W and lower Fe concentrations than F82H.

PISCES

