Steel-based materials surface damage and modification under high power plasma exposures

V. Makhlai, I. Garkusha, O. Byrka, V. Voitsenya, S. Herashchenko, G. Glazunov, National Science Center “Kharkov Institute of Physics and Technology”, Institute of Plasma Physics, Kharkiv, Ukraine

K. Sereda, A. Chunadra
V. N. Karazin Kharkiv National University, 61022 Kharkiv, Ukraine
S. Surovitskiy, S. Malykhin, National Technical University “Kharkiv Polytechnical Institute”, Kharkiv, Ukraine

D. Terentyev
Nuclear Materials Science Institute, SCK•CEN, Mol, Belgium

A. Golubeva
NRC "Kurchatov Institute", Moscow, Russia
Outline

- Introduction

- Experimental facility and samples
 - QSPA Kh-50
 - MPC
 - DSM-2; DSM-1
 - GAS

- Feature of modification and alloying of steels
- First results of hydrogen outgassing of steels modified by pulsed plasma streams

- Conclusions
Introduction

Simultaneous impacts of high energy and particle loads to the material surface are typical for material performance in various extreme conditions:

- turbines
- space apparatus,
- nuclear engineering
- fusion

PWR-fuel element

≈ 1

≤ 20

85

2000

Power density MW/m²
Introduction

Overview of Main ITER Components and Materials

Materials issues are key factors for ITER success.
Introduction

• Tungsten is chosen as main plasma facing material for ITER and DEMO divertor design.
• Tungsten coatings can also be alternative to the monolithic material, especially for large area of the DEMO reactor first wall.
• Stainless steels (SS) are one of main material for next step fusion devices. However, the large sputtering rate under high energy partials is main disadvantage of SS as armour material.
• One of the potential ways of improving these properties is by alloying theirs surface layer with heavy elements.
• Alloying of surface layer by mixing previously deposited thin \(h_{\text{coat}} < h_{\text{melt}} \) coatings is one of possibility options.

Evaluation of hydrogen/helium retention (outgassing) rate is also important issue for fusion reactor.

The detailed experimental studies of threshold values for the damaging processes under fusion reactor relevant loading scenarios are required for evaluation of the materials performance under high heat fluxes.
High power plasma streams is unique tool for surface modification

Combination of physical mechanisms:
- ion bombardment,
- heat load (melting, but no evaporation, thermal quenching),
- shock waves,
- material alloying with plasma species,
- mixing in molten stage

The ferritic/martensitic Eurofer and Rusfer steels were modified and alloyed with tungsten by plasma induced mixing.
Stainless steel targets were covered with tungsten by PCD method in facility of Bulat family.

Coatings were deposited by PVD method during 3 min in argon of $p = (4...5) \times 10^{-4}$ Torr.

Parameters of arc discharge are next: current of arc $I_{\text{arc}} = 230$ A and displacement voltage of $U_{\text{bias}} = 140$ V.

Before depositions of coatings, the ionic clearing (duration 2 min, $U_{\text{bias}} = 1.5$ kV and $I_{\text{arc}} = 100$ A) was applied.

The thickness of coatings is about 3 μm

- Ten EUROFER targets of $10\text{mm} \times 10\text{mm} \times 1$ mm received from Dr. Dmitry Terentyev, SCK-CEN Belgium Nuclear Research Centre, Mol, BELGIUM
- Two RUSFER steel have been received from Dr. Anna Golubeva, NRC “Kurchatov Institute”, Moscow, Russia
✓ The energy range of ITER disruptions and ELMs will be clearly higher than in the existing tokamaks
✓ Material response to multiple exposures are studied with ion and electron beams, liner facilities, pulsed plasma guns and QSPA.
✓ QSPA is attractive for:
 - Reproduction of heat and particle loads typical for disruptions and ELMs
 - Study of plasma/surface interaction (shielding, melting, evaporation, erosion mechanisms) and dynamics of erosion products
 - Qualification of PFM&PFCs in extreme conditions
 - Comparison of load effects with other simulators. Data for validation of numerical models

QSPA Kh-50 is largest and most powerful device among QSPAs
Energy density $\rho_w = (0.5\ldots30)$ MJ/m2.

Plasma pulse duration $\tau \approx 0.25$ ms;

$P_{\text{max}} = (3\ldots18)$ bar, $n = (0.2\ldots5) \times 10^{16}$ cm$^{-3}$; $B_0 = 0.54$ T ($\beta \approx 0.3\ldots0.4$);

Diameter of plasma stream- 15 cm
Examples of Plasma Parameters in Different Regimes QSPA Kh-50

<table>
<thead>
<tr>
<th>Parameters</th>
<th>ELM 0</th>
<th>ELM 1</th>
<th>ELM 2</th>
<th>ELM 3</th>
<th>Disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma stream energy density [MJ/m²]</td>
<td>0.4</td>
<td>0.9-1.0</td>
<td>1.2-1.5</td>
<td>2.4-2.5</td>
<td>24-30</td>
</tr>
<tr>
<td>Target Heat Load [MJ/m²]</td>
<td>0.22</td>
<td>0.45</td>
<td>0.7-0.75</td>
<td>1-1.1</td>
<td>0.65-0.7 (strong vapor shielding)</td>
</tr>
<tr>
<td>Plasma load duration [ms]</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.2-0.25</td>
</tr>
<tr>
<td>Maximal dynamical pressure of plasma stream [MPa]</td>
<td>0.48</td>
<td>0.32</td>
<td>0.45</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Average plasma density [10¹⁶ cm⁻³]</td>
<td>1.5-2.5</td>
<td>0.5-0.7</td>
<td>0.2-0.3</td>
<td>4-8</td>
<td></td>
</tr>
<tr>
<td>Plasma stream diameter [cm]</td>
<td>12-14</td>
<td>12-14</td>
<td>16</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Surface effects</td>
<td>below crack threshold</td>
<td>no melting</td>
<td>melting</td>
<td>Evaporation start</td>
<td>Strong vapor shield</td>
</tr>
</tbody>
</table>

➢ Due to a vapor shield formation the exposed armour target will be protected from the high heat load and erosion by evaporation will be reduced in hundred times

25.03.19; RCM of CRP on Plasma-wall Interaction with Reduced-activation Steel Surfaces in Fusion Devices, Vienna, 25-27 March 2019
Experimental facility MPC

Electrode system of MPC

∅ cathode (outer electrode) = 6 cm, 3 cm
∅ anode (inner electrode) = 12 cm, 8 cm
Copper rods diameter of 1 cm and of 14.7 cm in length

General view of MPC with diagnostics

\[C_c = 90 \ \mu F \quad U_c = 20\div30 \ kV\]
\[C_v = 700 \ \mu F \quad U_v = 3 \div 5 \ kV\]
\[I_d = 500 \ kA \quad T_d = 15 \div 20 \ \mu s\]
Working gas – helium, Xe+He
Operation modes of MPC

discharges in helium under different residual pressures with additional pulsed injection of Xe directly into the compression zone.

Maximal heat load to tungsten surface exposed to helium plasma achieved 0.39 MJ/m².

The heat load to tungsten surface exposed under additional injection of xenon is decreased to 0.33 MJ/m².

Decreasing of total energy measured by colorimeter is caused by losses to ionization of heavy impurities (Xe).
DSM-2 SOURCE FOR MODELING OF LONG-TIME SPUTTERING INFLUENCE ON SURFACE STRUCTURE

1, 2 – central and edge plasma volumes with approximate boundaries between them
3, 4 – magnetic mirrors,
5 – vacuum vessel,
6 – gas puffing,
7 – ECR power input,
8 – magnetic coils.
Source of accelerating voltage:
9 – alternating voltage,
10 – direct-current voltage.
11 – mirror sample,
12 – Cu holder of Sample under the test,
13 – teflon insulator.

Ion flux $\sim 10^{16}$ ion/cm2,
ion energy range 30 eV – 1500 eV (fixed or time variable),
ion fluence $\sim 3 \cdot 10^{21}$ ion/cm2,
sample temperature RT-200 °C.
Studies of exposed surfaces

Surface analysis carried out with optical microscope equipped with CCD camera,
Roughness of surface was also measured.

XRD fluorescence method was used for measurements of elements content
Changes of phase state on the surface were obtained from XRD spectrum analysis

Parameters of structure

\[a_0 < a_{\text{ref}} \] the surplus of vacancies; \(a_0 > a_{\text{ref}} \) the surplus of interstitial atoms

\(a_{\text{refW}} = 0.3165 \text{ nm}, \ a_{\alpha-\text{Fe_ref}} = 0.2866 \text{ nm} \).

B - the width of the profile is proportional to the number of line defects (dislocations) in the structure.
The asymmetry (\(\delta B \)) is attributed by the presence of complexes of point defects. The sign of \(\delta B \) is caused by the type of defects: vacancies (\(\delta B > 0 \)) or interstitial atoms (\(\delta B < 0 \)).
Alloying and modification with repetitive plasma pulses

Steel #45 samples covered of PVD coatings.

5 QSPA Kh-50 pulses with energy load of 0.5 MJ/m², pulse duration 0.25 ms

<table>
<thead>
<tr>
<th>Element content (wt %) of 45Steel Initial</th>
<th>Cr</th>
<th>Mn</th>
<th>Ni</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element content</td>
<td>---</td>
<td>0.41</td>
<td>---</td>
<td>99.59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element content (wt %) of 45Steel+Cr+QSPA+Ni+QSPA</th>
<th>Cr</th>
<th>Mn</th>
<th>Ni</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element content</td>
<td>3.346</td>
<td>0.679</td>
<td>2.501</td>
<td>93.474</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element content (wt %) of 45Steel+Cr+Ni+QSPA</th>
<th>Cr</th>
<th>Mn</th>
<th>Ni</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element content</td>
<td>5.467</td>
<td>0.523</td>
<td>4.227</td>
<td>89.783</td>
</tr>
</tbody>
</table>
Coatings modification under heat load above melting threshold

Diffraction patterns (Cu-Kα irradiation) of Cr18Ni10Ti stainless steel (analog SS321)

- α-Fe phase is recognized together with lines of γ-Fe phase and W on exposed surfaces.
- Lattice spacing of γ-Fe in stress free state increased from 0.359 nm up to $a_{\gamma-Fe} = 0.35943$ nm.
- The concentration of tungsten achieved 2 a.p. in modified layer.
- Tungsten penetrated up to 0.38 µm in depth of modified layer.
- Presence of tungsten leads to decrease of sputtering rate of stainless steel surface.

25.03.19; RCM of CRP on Plasma-wall Interaction with Reduced-activation Steel Surfaces in Fusion Devices, Vienna, 25-27 March 2019
- Melted, re-solidified layer developed on exposed surfaces.
- Modified layer includes of material coating and substrate.
- Macro and micro cracks appear on exposed surfaces

Modified tungsten coating

MPC

QSPA
The roughness of exposed surfaces increases due to appearing of crack, melting of surface layer as well as etching and sputtering of boundaries of cracks and grains.

Initial

Irradiated by 5 QSPA plasma pulses;

Surface covered by W and exposed to QSPA plasma

Heat load Q = 0.6 MJ/m²
Initial Surface coated by tungsten and exposed to QSPA plasma

Diffraction patterns (Fe-K α1 irradiation)

- Only lines of Fe phase are observed on non treatment surfaces.
- Surface modification led to penetration of tungsten in affected layer.
- W phases are recognized together with lines of Fe phase on treatment surfaces.
- Intensity of tungsten lines is more at times in compare with intensity of substrate lines.
Results of XRD spectral analysis

- W lines are not recognized after sputtering of surface
- Intensity of substrate lines increased in compare with initial state.

W coating modified by QSPA plasma and irradiated by Ar$^+$ beam.
Content of tungsten (at %) in Eurofer as solid solution

<table>
<thead>
<tr>
<th></th>
<th>lattice spacing a_0, Å</th>
<th>Content of tungsten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>2.8714</td>
<td>0.8</td>
</tr>
<tr>
<td>Modified by plasma stream and sputtered by Ar beam</td>
<td>2.8676</td>
<td>0.8</td>
</tr>
<tr>
<td>W coatings sputtered by Ar beam</td>
<td>2.8717</td>
<td>1.3</td>
</tr>
<tr>
<td>Coated W, exposed by QSPA and sputtered by Ar beam</td>
<td>2.8703</td>
<td>0.85</td>
</tr>
<tr>
<td>Coated W, exposed by MPC and sputtered by Ar beam</td>
<td>2.8704</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Results of XRD fluorescence studies

Element content (wt %) of Eurofer

<table>
<thead>
<tr>
<th>Condition</th>
<th>Cr</th>
<th>W</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>9.7</td>
<td>0.8</td>
<td>Base</td>
</tr>
<tr>
<td>Coated W and exposed by QSPA</td>
<td>1.3</td>
<td>85.8</td>
<td>Base</td>
</tr>
<tr>
<td>Coated W, exposed by QSPA and sputtered by Ar beam</td>
<td>8.9</td>
<td>1.1</td>
<td>Base</td>
</tr>
<tr>
<td>Coated W and exposed by MPC</td>
<td>9.7</td>
<td>1.1</td>
<td>Base</td>
</tr>
<tr>
<td>Coated W and sputtered by Ar beam</td>
<td>9.6</td>
<td>1.1</td>
<td>Base</td>
</tr>
</tbody>
</table>
Initial Microhardness is indicated in brackets for each samples. Plasma treatment leads to increases of microhardness. It is indicated on accumulation of elastic energy in the stressed surface layer. As result of this the delamination of coatings developed.

The delamination of coatings are also observed, especially when the surface is irradiated by short plasma streams.
Frames of the digital camera with the traces of erosion products (exposure time 1.2 ms). The camera’s view is parallel to the target surface:

- a – 2.4 ms
- b – 4.8 ms
- c – 8.4 ms
- d – 15.6 ms

after the start of plasma-surface interaction.

Plasma impacts with loads above the melting threshold cause the droplet/dust particles ejection from the surface of tungsten coating.

Velocity distribution of ejected particles vs. their start time from the surface.
The possible way to improve coatings resistance is application of several cycles of plasma treatment.

• One cycle consist of two stages

 • First stage: deposition of thin tungsten coating of 1-2 µm
 • Second stage the coated samples will processed with pulsed plasma.

• Some decrease of coating thickness together with increasing of number of cycles of plasma treatment creates condition for penetration of alloying element in depth of substrate.

• The samples of Eurufer and Rusfer were coated with W and irradiated by QSPA plasma stream.

• The sputtering tests of modified surfaces were also performed
SEM images of Eurofer samples

- Melted, re-solidified layer developed on exposed surfaces.
- Modified layer includes of material coating and substrate.
- Macro and micro cracks appear on exposed surfaces

W coating modified by QSPA plasma and irradiated by Ar$^+$ beam.

25.03.19; RCM of CRP on Plasma-wall Interaction with Reduced-activation Steel Surfaces in Fusion Devices, Vienna, 25-27 March 2019
SEM images of Rusfer samples

W coating modified by QSPA plasma

- Melted, re-solidified layer developed on exposed surfaces.
- Modified layer includes of material coating and substrate.
- Macro and micro cracks appear on exposed surfaces

W coating modified by QSPA plasma and irradiated by Ar$^+$ beam.

25.03.19; RCM of CRP on Plasma-wall Interaction with Reduced-activation Steel Surfaces in Fusion Devices, Vienna, 25-27 March 2019
Results of XRD spectral analysis

- W phases are recognized together with lines of Fe phase on treatment surfaces.
- Intensity of tungsten lines is more at times in compare with intensity of substrate lines.
Results of XRD fluorescence studies

Element content (wt %) of Eurofer

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cr</th>
<th>W</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>9.7</td>
<td>0.8</td>
<td>Base</td>
</tr>
<tr>
<td>Single coated W and exposed by QSPA</td>
<td>1.3</td>
<td>85.8</td>
<td>Base</td>
</tr>
<tr>
<td>Twice covered W and exposed by QSPA</td>
<td>7.11</td>
<td>27.46</td>
<td>Base</td>
</tr>
<tr>
<td>Sputtered by Ar- beam</td>
<td>9.9</td>
<td>1.3</td>
<td>Base</td>
</tr>
</tbody>
</table>

The concentration of tungsten increased in 1.5 times
Results of XRD fluorescence studies

Element content (wt %) of Rusfer

<table>
<thead>
<tr>
<th></th>
<th>Cr</th>
<th>W</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>12.02</td>
<td>1.3</td>
<td>Base</td>
</tr>
<tr>
<td>Twice covered W and exposed by QSPA</td>
<td>8.5</td>
<td>37.37</td>
<td>Base</td>
</tr>
<tr>
<td>Sputtered by Ar-beam</td>
<td>9.4</td>
<td>2.3</td>
<td>Base</td>
</tr>
</tbody>
</table>

The concentration of tungsten increased in more 1.5 times
Mass losses measurements

<table>
<thead>
<tr>
<th></th>
<th>Δm, mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Eurofer</td>
<td>3.43</td>
</tr>
<tr>
<td>Modified Eurofer</td>
<td>2.70</td>
</tr>
<tr>
<td>Initial Rusfer</td>
<td>2.315</td>
</tr>
<tr>
<td>Modified Rusfer</td>
<td>2.20</td>
</tr>
</tbody>
</table>

The sputtering tests of modified surfaces were performed.
Mass losses of modified Eurofer decreased by up to 20%.

\[\Delta m, \text{ mg} \]

25.03.19; RCM of CRP on Plasma-wall Interaction with Reduced-activation Steel Surfaces in Fusion Devices, Vienna, 25-27 March 2019
The experimental device GAS

1 – W-Re thermocouple; 2 – flow; 3 – probe; 4 – vacuum chamber; 5 – mass spectrometer; 6 – nitrogen condensation pump; 7 – diffusion pump; 8 – forevacuum pump; 9 – hydrogen balloon; 10 – helium balloon

GAS used for the study of gas release, hydrogen sorption, hydrogen permeability
Direct current pulsed heating of the samples was applied
Pulsed heating of the samples

Temperature dependence on the heating time for SS samples with thickness of 0.3 mm and 0.5 mm

Direct current pulsed heating of the samples was used during experiments in the GAS
Mainly hydrogen desorbs from SS sample at temperature of 500°C.

Outgassing rate was calculated according to equation:

\[q = (P - P_0) S / F, \text{ [Torr} \cdot \text{L/s} \cdot \text{cm}^2] \]

where

- \(S \) [L/s] pumping speed,
- \(F \) [cm\(^2\)] the area of the probe surface heated to 500°C,
- \(P_0 \) [Torr] - the initial pressure
- \(P \) [Torr] - the maximum pressure after sample heating
Samples for outgassing studies

Stainless steel (SS) 12Kh18N10T samples of 10x190x(0.3…0.5) mm were used for studies of outgassing. Samples were studied after

1. Initial heated to 500°C

(initial specific rate of hydrogen outgassing (hydrogen elease)
2. saturated in a molecular hydrogen atmosphere at a pressure of

~10^{-2} Torr during 24 hours in GAS facility
3. irradiated by hydrogen plasma of stationary magnetron discharge in DSM-1
4. irradiated by hydrogen QSPA plasma with different heat loads.
DSM-1 diagnostic stand of materials

DSM-1 is a device with magnetron type discharges. Two symmetrical cathodes were connected with one cylindrical cathode-sample. The discharges were ignited in magnetic field of 0.05 T under work gas (hydrogen) pressure about 0.2 Pa.

DSM plasma
ion energy 0.7 keV
fluence 6×10^{24} ions/m2; up to 8 hours
QSPA plasma fluence 5×10^{24} ion/m2, pulse duration of 0.25 ms, ion energy 0.4 keV
First results of hydrogen retention and release rate measurements

1 initial specific rate of hydrogen outgassing (hydrogen release)
2- saturated in a molecular hydrogen atmosphere at a pressure of ~10⁻² Torr during 24 hours
3, 4- irradiated by hydrogen plasma of stationary magnetron discharge in DSM-1
5-8 irradiated by hydrogen QSPA plasma with different heat loads.

Rates of hydrogen release from SS samples at the temperature of 500°C

Hydrogen outgassing is close value for SS samples saturated in steady state discharges of DSM-1 and irradiated by plasma streams in QSPA Kh-50

Particle energy and fluence caused outgassing value.

25.03.19; RCM of CRP on Plasma-wall Interaction with Reduced-activation Steel Surfaces in Fusion Devices, Vienna, 25-27 March 2019
Hydrogen release rate v.s. pulsed heat load on SS sample surface

Heat load of 0.6 MJ/m² caused pronounced melting of exposed surfaces.
- Melted, re-solidified layer developed on exposed surfaces.
Heat loads below 0.3 MJ/m² not leads to surface melting.

Increase of pulsed heat load to surface (above SS melting threshold) leads to essential decrease of hydrogen saturation.
Conclusions

➢ Experimental studies of surface modification of Eurofer and Rusfer samples covered by tungsten coatings have been performed with powerful plasma streams. The heat load on the surface was near the tungsten melting threshold. Tungsten coating was preliminary deposited by PVD method in facility of Bulat family. The sputtering tests of modified surfaces were also performed.

➢ The possibility of alloying of Eurofer and Rusfer surfaces with tungsten was demonstrated. The concentration of tungsten have been achieved several wt% in surface layer. The surface morphology is developed mostly by melting and re-solidification of a surface layer.

➢ The sputtering yield (mass losses) of samples modified by plasma streams decreased due to increasing of tungsten concentration in modified surface layer.

➢ Hydrogen outgassing from SS samples saturated in steady state discharges in DSM and in the plasma accelerator QSPA Kh-50 is close in value. Modified layer formation leads to essential decrease of hydrogen saturation.
Summary

- The operational regimes of the plasma accelerators (QSPA Kh-50 and MPC) will be adjusted to achieve adequate variation of energy and particles loads to the exposed steel materials.
- Experiments on surface modification of different steels have been performed using multiples irradiation of material surfaces by quasi-steady and pulsed plasma streams with varied plasma loads.
- First experiments on hydrogen retention and release rate measurements of stainless steel modified by plasma screams have been performed.
Thank you for your attention