Anna V. Golubeva

NRC 'Kurchatov Institute', Moscow, Russia

Progress in the study of deuterium interaction with low-activated ferrite-martensitic steels

Persons involved:

A.V. Golubeva, B.I. Khripunov, A.S. Anikin, A.A. Mednikov, D. Kozlov, N.P. Bobyr, N.N. Kolobylina – *NRC "Kurchatov institute" Moscow, Russia*

D. Kovalenko, N. Klimov – TRINITI, Troitsk, Russia

V. Efimov, Yu.M. Gasparyan,- MEPhI, Moscow, Russia

V.M. Chernov – A.A. Bochvar's institue, Moscow, Russia

D. Terentiev - SCK•CEN, Belgium

N. Ashikawa - The Graduate University for Advanced Studies & National Institute for Fusion Science, Gifu, Japan

Q. Huang - Institute of Nuclear Energy Safety Technology, Hefei, China

Materials:

Rusfer (Prof. V.M. Chernov)
 Eurofer (Dr. Dmitry Terentiev)
 CLAM (Prof Qunying HUANG, Hefei)
 F82H (Prof. Naoko Ashikawa)

Topics:

- **1. ELMs-like D plasma irradiation**
- 2. Selective sputtering study

Composition of RAFMS, wt. %

γ-phase stab., Impr. Long- term creep			Strong c former, HT strer	arbide	γ -phase stab., Ni repl., \downarrow crit. cooling rate for martecite formation				e s	Strong carbide former, stab. γ-phase, Mo replacement		
Ma for	rtencite mation	e					Corro resista	sion ance	Gr re	ain refir ed. ↓-pha	iement, ase	
Steel	Smelti ng Nr	Ni	С	N	Si	Ti	V	Cr	Mn	Fe	Та	W
Rusfer	ДШ41056	0.03	0.16	0.07	0.4	0.05	0.4	12	0.6		0.15	1.09
Eurofer	83699	0.007	0.15	0.017			0.19	8.99	0.44	S	0.014	1.1
CLAM	1506		0.12	0.002 6	0.025	0.21	0.19	9.06	0.42	BAS		1.52
•F82H	?		0.1				0.2	8	0.45		0.06	2.0 •

Samples 10x10 mm, 1-2-3 mm thick

1. Polishing F82H in Japan, CLAM in China,

Rusfer & Eurofer in Russia, at grinding and polishing machine Multiprep (Allied).

- a) Disks with silicon carbide shaped
- b) Diamond films with size of abrasive particles from 35 to 9 μ m. At polishing the samples are wetted with water.
- c) Polishing textile with the application of diamond suspensions based on glycol with a decrease in crystal size from 6 microns to 0.04 microns.

2. Cleaning in ultrasonic bath

a) alkaline liquid solution for cleaning metals (5%) + distilled water - 15 minutes

b) isopropanol-15 minutes

c) ethanol – 15 minutes

3. Heating in vacuum at 450 C (773 K) for 2 hours

Structure changes of materials at annealing

Microscopy

Selective sputtering study

LENTA (linear plasma simulator for high flux plasma irradiation)

- Steady-state linear plasmas
- Electron beam is used to generate plasma in crossed E \perp B fields

Axial magnetic field0,2 TInjector power15 kWPlasma density $10^{11} \div 5 \times 10^{13} \text{ cm}^{-3}$ Electron temperature $0.5 \div 30 \text{ eV}$ Plasma composition

D₂⁺ •70÷30%, D⁺ - 30÷90%, D₃⁺, O⁺

Plasma density	10 ¹¹ ÷5×10 ¹³ cm ⁻³					
Electron temperature	0.5÷30 eV					
Plasma flux	$10^{17} \div 10^{19} \text{ ion/c} \times \text{cm}^{-2}$					
Plasma fluence	$10^{17} \div 10^{19} \text{ ion/c} \times \text{cm}^{-2}$					
lon energy	10-500 eV					
Sample temperature	RT-1800K					

Samples orientation: parallel to the ion beam

1 mm thick samples

lon energy: 100 eV Flux: $3 \cdot 10^{21} \text{ D/m}^2$ s Fluences: $3 \cdot 10^{24}$, $8 \cdot 10^{24}$, 10^{25} , $3 \cdot 10^{25}$, $7 \cdot 10^{25}$ ion/m² Plasma composition – mainly D⁺, D₂⁺ < 10 %, O⁺ < 1% Temperature: 380→443 K at the end of all irradiations

[K. Sugiyama et al. JNM 463 (2015) 272]

Sputtering Yield

O concentration in plasma is < 1 %, but unknown

Sputtering coefficients, E=100 eV

- D⁺ R (Fe, RT)=0.00035 [1] R (Fe, 170)=0.0035 [2]
- O⁺ R (Fe, RT)=0.4 [SRIM] R(W, RT)=0.026 [SRIM] R (Fe, 170 C) =?

Very rough estimation gives, that < 0.75 % of O⁺ (even 0.075 % if temperature dependence is the same as supposed for D Sputtering yield)can give about 40% of sputtering

[1] Eckstein, Garcia-Rosales, Roth, Ottenberg, Sputtering data, IPP, 1993
 [2] Roth, Sugiyama, Alimov, Hoeschen et al., JNM 454 (2014) 1–6

• Sputtered area ≠ sample area (magnetic samples)

Possible reason for non-homogeneity– magnetic material

Eurofer Relief, 0°

Relief,

0°

Relief, 52°

3.10²⁵ ion/m⁻², Eurofer, elements mapping by EDS

Ridges are enriched with W. Concentraions of W & Cr in ridges is decreases

3.10²⁵ ion/m², Rusfer, elements mapping by EDS

Main result:

- Surface of Eurofer changes quicker than of Rusfer, combs are several times higher at Eurofer surface at the same fluence
- In combs concentration of Fe & Cr is lower and concentration of W is higher than between combs

Plans:

- 1. Sputtering of CLAM and F82H at the same conditions (this year)
- Temperature dependence for 4 RAFMS (2020-2021)

ELMs-like D plasma irradiation

- Heat load 0.5 ÷ 5 MJ/m² 0.5÷1.5 MJ/m² in ELMs experiments ~2.3 MJ/m² in disruption experiments
- Pulse duration 0.1 ÷ 0.6 ms
- Plasma stream diameter 6 cm
- Ion impact energy 0.1 ÷ 1.0 keV
- Electron temperature < 10 eV
- Plasma density 10²² ÷ 10²³ m⁻³

Absorbed energy density distribution,%

Load uncertainty 10-15%

Pulsed D plasma irradiation for ELMs simulation

2 types of loads were chosen:

```
"below melting" – 0.3 MJ/m<sup>2</sup>, 1 ms
"above melting" – 0.6 MJ/m<sup>2</sup>, 1 ms
Flux at one pulse of 1 ms - 10<sup>23</sup>-10<sup>24</sup> D/m<sup>2</sup>
Number of pulses – 1, 5, 10, 20, 50
```

Irradiation in sets of 4 samples – Rusfer (2mm thick), Eurofer (2 mm), F82H (1 mm), CLAM (3 mm) simultaneously

Questions to answer:

- 1. How RAFMS sustain ELM-like loads?
- 2. What amount of D will be retained at ELM-like loads?
- 3. How ELM-like D plasma damage influences further D retention at interaction with gas and D plasma irradiation?

Before irradiation

Before melting, 1 pulse – almost no changes

Before melting, 5 pulses

Above melting, 1 pulse

Above melting, 1 pulse

Eurofer

Rusfer

Above melting, 1 pulse

Above melting, 5 pulses

Above melting, 5 pulses

All materials were melted !

For use as PFMS those materials better that do not move at melting.

Similar situation was described with austenitic steels [Madarame et al., FED 9-1989-207, Madarame et al., FED 15 I1-1991-75] It was found that impurities – S, O led to wavy surface (from some %), While Ca, Al and Ti suppress waving.

These impurity contents affect the temperature coefficient of surface tension in liquid iron.

Probably, other impurities also have similar effects.

Above melting, 5 pulses

crystallites <1µm are formed at all surfaces. Cracking I most pronounced for CLAM

out of the sample.

irradiation and TDS, which we do in different towns, Troitsk and Moscow.

 $\sim 1e20 \text{ D/m}^2$ is retained

ELMs-like plasma loads - main results:

- At D plasma loading 0.3 MJ/m², 1 ms, 5 pulses RAFMS surfaces are flat, covered with crystallines of a size ≤ 1 µm. Cracks can be found at surfaces of all materials. The concentration of cracks is highest at Rusfer surface.
- After D plasma loading 0.6 MJ/m², 1 ms, 1 and 5 pulses surfaces of Eurofer and F82H are flat wile surfaces of Rusfer and CLAM are waved. Surfaces of all RAFMS consist of crystallines of a size ≤ 1 µm. The most pronounced cracking was found at CLAM sample.
- Retention in Rusfer>retention in Eurofer & CLAM> Retention in F82H. BUT note different thicknesses, Rusfer & Eurofer – 2 mm, CLAM – 3 mm, F82H – 1mm
- 4. The maximum level of retention 1e21 D/m² was reached in Rusfer at plasma loading above melting (0.6 MJ/m², 1 ms)
- 5. At pulsed D plasma irradiation retention in Rusfer and Eurofer is significantly higher if surface was melted.

- 1. Irradiation of all RAFMS with 10, 20, 50 pulses below and above melting. Microscopy & retention (2019).
- Investigation of influence of ELMs-like loads on further D retention at different conditions of exposure in gas and plasma irradiation (2019-2020).

Thank you for your attention!

$3 \cdot 10^{25}$ ion/m⁻², FIB cut

Eurofer

Rusfer

Note different scales