Interaction of high flux plasma with Fe and RAFM steels: experimental and computational assessment

Dmitry Terentyev, Lorenzo Malerba, Athina Puype, Anastasia Bakaeva

SCK-CEN, Belgian Nuclear Research Centre

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

Outline

Part I

- Improving high-Cr grades
- Mechanical data

Part II

- Exposure of pure Fe (in reference and deformed state)
- Exposure of E97, T91 and two advanced grades
- Part III
 - Atomic-scale assessment of H in Fe
 - Computational model to consider Non-equilibrium trapping and its connection to diffusion limited trapping

Part I

Development of RAFM steels with advanced mechanical properties

Standard and improved high-Cr grades for Fusion Appl.

- One principle problem of 9-Cr steels: low temperature embrittlement
- Second one: creep, limiting application up to 650C

How to reduce DBTT and enhance creep resistance

- Modify precipitate distribution
 - Change ratio MC to MX
 - Modify H-treatment
 - Modify Composition
- V and Nb:
 - Stabilize grains
 - Reduce grain coarsening
 - Increase ductility
- Ta:
 - Carbide former & stabilizer
- 9Cr remains optimum
 - Less Cr poor corrosion resistance
 - More Cr hardening (α ') and

δ-ferrite

Copyright © 2014 SCK•CEN

Advanced Thermo-Mechanical Treatment: TMT

0.09Ta	Pas	s 1	Pas	s 2	Pas	is 3	Pas	ss 4	Pas	ss 5	Pas	s 6
	T	%	Т	%	Т	%	Т	%	Т	%	Т	%
\cup	1200	19.547	1150	25	1100	30	960	30	900	30	850	30
	D		D	0	D	-				6	D	<u>c</u>
\bigcirc	Pa	ss 1	Pas	ss 2	Pas	ss 3	Pas	ss 4	Pas	ss 5	Pas	s 6
2	Pa: T	ss 1 %	Pa: T	ss 2 %	Pas T	s 3 %	Pas T	ss 4 %	Pas T	s 5 %	Pas T	s 6 %

Copyright © 2014 SCK•CEN

Role of heat treatment

Main differences after normalizing

880°C \rightarrow > dissolution temperature $M_{23}C_6$ & restriction prior austenite grain (PAG) growth by untransformed tempered martensite after tempering : small martensitic blocks with different degree of tempering and

relatively large $M_{23}C_6$ mainly on packet boundaries

920°C \rightarrow complete transformation to γ & homogeneously distributed carbon & hardly no PAG growth & high HAGB density after tempering : small martensitic blocks with smaller $M_{23}C_6$ on block and packet

small martensitic blocks with smaller $M_{23}C_6$ on block and packet boundaries

980°C \rightarrow > dissolution temperature MX & PAG growth after tempering : martensitic blocks with $M_{23}C_6$ more evenly

martensitic blocks with $M_{23}C_6$ more evenly distributed mainly on the block boundaries

1050°C \rightarrow extended prior austenite grain growth & homogeneously distributed nitrogen & low HAGB density after tempering : relatively large martensitic blocks with elongated $M_{23}C_6$ on block and packet boundaries

Precipitation of Vanadium and Tantalum

Fraction of elements that precipitate at different stages of Q&T treatment

Wt%	Cr	Та	V	
0.09Ta	9.3	0.086	0.22	

wt%V & wt%Ta precipitated

 Martensite structure and carbide measurements

Mechanical properties of improved grades

Q&T: 880°C tested at -140°C

Two grades were selected for Plasma exposure

• "196C"

- 0.11C;9Cr;1W;0.23V;0.09Ta;0.0113N;0.4 Mn;0.03Si
- Heat treatment: 880°C 1/2h + water

quench + 750°C for 2 hr.

low DBTT (-150C);

• "8Cr"

- 0.02C;8Cr;1W;0.22V;0.13Ta;0.022N (No Mn&Si)
- Heat treatment: 1050°C 1/4h + water quench + 675°C for 1.5h
- Fine grain microstructure with; DBTT -90°C

- Plasma exposure of pure Fe
- Plasma exposure of advanced RAFM and E97, T91

Depth distribution & sub-surface trapping

High heat flux plasma exposures

- PILOT-PSI (NL, DIFFER)
- Stationary Loads & ELM-like pulses
- B field = 0.4-1.6 T; target bias 50 eV
- Water cooling 20 C (passive control of T surface)
- Flux 0.8×10²⁴ D/m²/sec

SCK.CEL

High flux plasma changes sub-surface

- Compressive stresses in sub-surface region generate:
 - Dense dislocation network
 - Limited within 10-15 μm
- Poly-crystalline (ITER-specification)

High flux plasma changes sub-surface

- Compressive stresses in sub-surface region generate:
 - Dense dislocation network
 - Limited within 10-15 μm
- Poly-crystalline (ITER-specification)
 Recrystallized at 1600C (1h)

High flux plasma changes sub-surface

- Compressive stresses in sub-surface region generate:
 - Dense dislocation network
 - Limited within 10-15 μm
- Single crystal (110 orientation)

Impact of dislocation networks in pure Fe

- Plastic deformation was applied at RT up to 40%
- Grain size: 50-100 µm
- Dislocation density:
 - Non-deformed: 10¹¹ m⁻²
 - 20% 8×10¹² m⁻² ; 40% 3×10¹⁴ m⁻²

Retention in pure Fe

High Flux D plasma exposure at Pilot PSI (NL)

- Surface temperature: 430-450 K
- Flux 0.8×10²⁴ D/m²/sec
- Fluence ~5×10²⁵ D/m²
- Detrapping stages
 - Around 470K (1.2 eV)
 Position does change with increase of dislocation density
 Around 620K (1.6 eV)
 Position shifts with increase of dislocation density

In line with results of Hong and Lee, Acta metall 32 (1984) 1581-1589

Exposure of Eurofer97 and T91

- High Flux D plasma exposure at Pilot PSI (NL)
 - Surface temperature: 430-450K
 - Flux 0.8×10²⁴ D/m²
 - Fluence ~5×10²⁵ D/m²
- Reference measurements
 T91; E97

x7.000

In line with results of Ogorodnikova et al. Nucl. Fusion 57 (20 and in line with Hino et al. JNM¹ 386-388 (2009) 736-739⁰¹⁵

right © 2014 SCK•CEN

Surface analysis of Eurofer97

Exposure at 430-450K: Blisters and individual grains

Size of blisters is about 0.1-2 µm; 3×10⁻¹⁵ m⁻²; mean spacing 10 µm

Exposure of Eurofer97 vs. two advanced grades

High Flux D plasma exposure at Pilot PSI (NL)

- Surface temperature: 430-450K
- Flux 0.8×10²⁴ D/m²
- Fluence ~5×10²⁵ D/m²

Release stages

- 470K just like in pure Fe
- In "196C" stage at 740K

SCK•CEN

Preliminary results

Exposure at 430-450K: E97 vs. advanced grade

Much smaller surface roughening; lower density of blisters Amount of plastic deformation induced in "196C" is much smaller than in E97

Summary of experimental data

- Pure Fe: one major release stage at 470K
- Plastically Deformed Fe: major release stage at 470K + emerging stage at 620K. Stage position shifts towards higher temperature with increase of dislocation density)
- E97 and T91 : spectrum is very similar to pure + minor release above 500K
- Surface microstructure of exposed steels reveals regions with very high dislocation density
- Improved RAFM steels:
 - "Clean Steel" 8Cr + 0.13Ta (no Si, Mn): spectrum same as E97
 - DBTT-optimized (0.09Ta, 880°C quenched): extra release stage at 750K. Same nature as in deformed Fe ?
 - Much smaller surface modification (higher toughness)

• Computational assessment of H in Fe

Atomic-scale description of H in bcc Fe

Hypothesis about trapping on dislocations

- Experimental and theoretical 'facts':
 - H-H can form clusters, but binding is very weak
 Binding (H-H)=0.22 eV (A); (H₂-H)=0.08 eV (D), (H₃-H)=0.02 eV (C)
 - Migration energy = 0.09 eV
 - Diffusion of H is controlled by interaction with lattice defects
 - Typical µ-structure of RAFM steels:
 - Dislocations (10¹³-10¹⁴ m⁻²)
 - Ferritic and martensitic grains, precipitates (M-X and M₂₃C₆)
- Possible mechanism of bubble nucleation without vacancies:

Interaction of Hydrogen with screw dislocation

SCK•CEN

In-pile migration of H on screw dislocation

- Migration occurs via hops through tetra-sites
- Migration barrier is 0.03 eV
- Saddle point configuration involves modification of the dislocation core structure
- Migration barrier will be strongly impacted by external stress applied

In-pile migration of H on edge dislocation

- Migration occurs via hops between tetra-sites next to the dislocation core
- Migration barrier is 0.1 eV
- Saddle point configuration is distorted octa-site

Clustering of Hydrogen on screw dislocation

Binding energy [eV] Charge density maps [e⁻/Å³] 0.152 0.186 SD ED Size of H_{N} Pure Fe **One H added** cluster length= Length=2.4 3**b** a_0 a) H + SD0.27 0.47 H + (H-SD)0.2 0.51 1.637 0.891 0.146 0.163 Two H added $H + (H_2-SD)$ 0.18 0.3 Three H added. b) 0.18 $H + (H_3-SD)$ -0.1 -0.12 0.25 $H + (H_4 - SD)$ 1.681 1.615

Screw dislocation can trap several hydrogen atoms simultaneously, but incremental binding energy decreases with number of trapped H atoms (from 0.27 eV- down to 0.03 eV).

c)

d)

Results: Molecular Dynamics Results

Nucleation of stable Hydrogen cluster on dislocation

Loop punching: growth of bubbles due to excess pressure via the emission of dislocation loops

Jog punching: formation of vacancy jog to accommodate H_N cluster + emission of interstitial jog

CK•CEN

Nucleation of stable Hydrogen cluster on dislocation

Jog punching: formation of vacancy jog to accommodate H_N cluster + emission of interstitial jog

pyright © 2014 SCK•CEN

Nucleation of stable Hydrogen cluster on dislocation

Jog punching: formation of vacancy jog to accommodate H_N cluster + emission of interstitial jog

© 2014

CK•CEN

Summary of atomic-scale data for H in Fe

- H solution energy -2.33 (H adds to cohesion of Fe) tetra-site
- H-H binding in Fe 0.22 eV, and it reduces to 0.02 eV for H_3 -H cluster
- H-vacancy binding 0.62 eV; one vacancy accepts 5 H atoms and does not growth further by emission of SIAs
- H-dislocation binding 0.27 eV and 0.47 eV (SD & ED); jog-emission is not energetically favourable mechanism
- H migration energy in bulk = 0.09 eV from tetra-to-tetra site;
- H migration energy on screw dislocation = 0.05 eV;
- H migration energy on edge dislocation = 0.1 eV
- Formation and growth of H defects resulting in blisters could be related to:
 - Nucleation of flake-like H clusters at GB interfaces, Carbide-GB interfaces
 - Growth of those defects by loop emission (as availability of H promotes plastic deformation)

Description of the model

outlook

- Complete computational model
 - Assess formation of H clusters at grain boundaries and Carbide-Fe interfaces
 - Assess interaction of H-vacancy-Carbon defects
- Parametric study of the high flux plasma exposure
 - Exposure temperature : 450K 850K (upper limit for RAFM)
 - Exposure dose : 5×10²⁵ 10²⁷ D/m²
 - Materials: Fe, Plastically deformed Fe; Eurofer97; "Clean Steel" (no Si & Mn)

Spare slides

Preliminary results

High Flux D plasma exposure at Pilot PSI (NL)

- Surface temperature: 950-970 K
- Flux ~10²⁴ D/m²
 - Fluence ~5×10²⁵ D/m²
- Reference measurements

• E97;

