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Part I 

Development of RAFM steels with advanced mechanical properties 
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Standard and improved high-Cr grades for Fusion Appl. 

 One principle problem of 9-Cr steels: low temperature 

embrittlement 

 Second one: creep, limiting application up to 650C 
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How to reduce DBTT and enhance creep resistance 

 Modify precipitate distribution 

 Change ratio MC to MX 

Modify H-treatment 

Modify Composition 

 V and Nb:  

 Stabilize grains 

 Reduce grain coarsening 

 Increase ductility 

 Ta: 

 Carbide former & stabilizer 

 9Cr remains optimum 

 Less Cr – poor corrosion resistance 

More Cr – hardening (α’) and  

δ-ferrite 
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Advanced Thermo-Mechanical Treatment: TMT 
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Effect of Heat Treatment 
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Role of heat treatment 

Main differences after normalizing 
 

      880°C    > dissolution temperature M23C6 & restriction prior austenite grain (PAG) growth by untransformed 

tempered martensite  
after tempering :  small martensitic blocks with different degree of tempering and 

 relatively large M23C6 mainly on packet boundaries 
 

       920°C    complete transformation to γ & homogeneously distributed carbon & hardly no PAG growth & 

high HAGB density 
after tempering :  small martensitic blocks with smaller M23C6 on block and packet 

 boundaries 
 

       980°C    > dissolution temperature MX & PAG growth 
after tempering :  martensitic blocks with M23C6 more evenly distributed mainly on the 

 block boundaries  

 

 

    1050°C    extended prior austenite grain growth & homogeneously distributed nitrogen & low HAGB density 
after tempering :  relatively large martensitic blocks with elongated M23C6 on block and 

 packet boundaries 
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Precipitation of Vanadium and Tantalum 
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Annealing temperature [°C] 

Martensite structure and carbide 

measurements 
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at different stages of Q&T treatment 
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Mechanical properties of improved grades 

Q&T: 880°C tested at -140°C 
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Two grades were selected for Plasma exposure 

 “196C” 

 0.11C;9Cr;1W;0.23V;0.09Ta;0.0113N;0.4

Mn;0.03Si 

 Heat treatment: 880°C 1/2h + water 

quench + 750°C for 2 hr. 

  low DBTT (-150C);  

 “8Cr” 

 0.02C;8Cr;1W;0.22V;0.13Ta;0.022N (No 

Mn&Si) 

 Heat treatment: 1050°C 1/4h + water 

quench + 675°C for 1.5h 

 Fine grain microstructure with; DBTT -

90°C 
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Part II 

 Plasma exposure of pure Fe 

 Plasma exposure of advanced RAFM and E97, T91 
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Depth distribution & sub-surface trapping 
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High heat flux plasma exposures 

 PILOT-PSI (NL, DIFFER) 

 Stationary Loads & ELM-like pulses 

 B field = 0.4-1.6 T; target bias 50 eV 

 Water cooling 20 C  

(passive control of T surface) 

 Flux 0.8×1024 D/m2/sec 

Exposure time (sec) 

Temperature at the centre of sample 
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High flux plasma changes sub-surface 

 Compressive stresses in sub-surface region generate: 

 Dense dislocation network 

 Limited within 10-15 µm 

 

 Poly-crystalline (ITER-specification) 
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High flux plasma changes sub-surface 

 Compressive stresses in sub-surface region generate: 

 Dense dislocation network 

 Limited within 10-15 µm 

 

 Poly-crystalline (ITER-specification) 

 Recrystallized at 1600C (1h) 
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High flux plasma changes sub-surface 

 Compressive stresses in sub-surface region generate: 

 Dense dislocation network 

 Limited within 10-15 µm 

 

 Single crystal (110 orientation) 
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Impact of dislocation networks in pure Fe 

 Plastic deformation was applied at RT up to 40% 

 Grain size: 50-100 µm 

 Dislocation density:  

Non-deformed: 1011 m-2 

 20% - 8×1012 m-2  ; 40% - 3×1014 m-2 

6 samples 10 mm 
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Retention in pure Fe 

 High Flux D plasma exposure at Pilot PSI (NL) 

 Surface temperature: 430-450 K 

 Flux 0.8×1024 D/m2/sec 

 Fluence ~5×1025 D/m2 

 

 Detrapping stages 

 Around 470K (1.2 eV) 

Position does change with  

increase of dislocation density  

 Around 620K (1.6 eV) 

Position shifts with increase of 

dislocation density  
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In line with results of Hong and Lee, Acta metall 32 (1984) 1581-1589 
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Exposure of Eurofer97 and T91 

 High Flux D plasma exposure at Pilot PSI (NL) 

 Surface temperature: 430-450K 

 Flux 0.8×1024 D/m2 

 Fluence ~5×1025 D/m2 

 Reference measurements 

 T91; E97 
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In line with results of Ogorodnikova et al. Nucl. Fusion 57 (2017) 036011 

and in line with  Hino et al. JNM 386-388 (2009) 736-739 
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Surface analysis of Eurofer97 

 Exposure at 430-450K: Blisters and individual grains 

Size of blisters is about 0.1-2 µm; 3×10-15 m-2; mean spacing 15 µm 
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Exposure of Eurofer97 vs. two advanced grades 

 High Flux D plasma exposure at Pilot PSI (NL) 

 Surface temperature: 430-450K 

 Flux 0.8×1024 D/m2 

 Fluence ~5×1025 D/m2 

 Release stages 

 470K – just like in pure Fe 

 In “196C” stage at 740K  
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Preliminary results 

 Exposure at 430-450K: E97 vs. advanced grade 

Much smaller surface roughening; lower density of blisters 

Amount of plastic deformation induced in “196C” is much smaller than in E97 
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Summary of experimental data 

 Pure Fe: one major release stage at 470K 

 Plastically Deformed Fe: major release stage at 470K + emerging 

stage at 620K. Stage position shifts towards higher temperature 

with increase of dislocation density) 

 E97 and T91 : spectrum is very similar to pure + minor release 

above 500K 

 Surface microstructure of exposed steels reveals regions with very 

high dislocation density 

 Improved RAFM steels: 

 “Clean Steel” 8Cr + 0.13Ta (no Si, Mn): spectrum same as E97 

 DBTT-optimized (0.09Ta, 880°C quenched):  extra release stage at 

750K. Same nature as in deformed Fe ?  

Much smaller surface modification (higher toughness) 
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Part III 

 Computational assessment of H in Fe 
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Atomic-scale description of H in bcc Fe 

27 

 After high flux plasma exposure: 

 H penetrates for large depths 

 Strong H sub-surface retention is 

also observeda within few  μm 

 Bubbles and blisters are formed 

 

 “sub-threshold” exposure 

conditions do not generate 

vacancies by displacement 

damage  

 Nucleation of stable H clusters is 

to occur on lattice defects 

 

H atoms He atoms 

(a): Ogorodnikova et al. Nucl. Fusion 57 (2017) 036011 
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Hypothesis about trapping on dislocations 

dislocations 

H 

H 

H 

? 

Trapping at dislocations 

and low angle GBs 

 

H clustering and migration along 

dislocations, trapping at random 

GBs 

 

H-dislocation interaction will 

determine retention at low 

temperature exposure 

 Experimental and theoretical ‘facts’: 

 H-H can form clusters, but binding is very weak  

Binding (H-H)=0.22 eV (A); (H2-H)=0.08 eV (D), (H3-H)=0.02 eV (C) 

 Migration energy = 0.09 eV 

Diffusion of H is controlled by interaction with lattice defects  

 Typical µ-structure of RAFM steels:  

Dislocations (1013-1014 m-2) 

Ferritic and martensitic grains, precipitates (M-X and M23C6) 

 Possible mechanism of bubble nucleation without vacancies: 
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Interaction of Hydrogen with screw dislocation 

<111> 
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<111> view: Differential displacements map <111> 
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SD 

SD 

H 

H 
ΔE = -0.27 eV 
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Fe Fe 

Fe 

a 
b c 

Migrations: 

a – in core  

b – in-out 

c – out core 

Em=0.03 eV  

 

Charge density map 
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In-pile migration of H on screw dislocation 

 Migration occurs via hops through tetra-sites 

 Migration barrier is 0.03 eV 

 Saddle point configuration involves 

modification of the dislocation core structure 

 Migration barrier will be strongly impacted by 

external stress applied 



Copyright © 2014  

SCK•CEN 

In-pile migration of H on edge dislocation 

 Migration occurs via hops between tetra-sites 

next to the dislocation core 

 Migration barrier is 0.1 eV 

 Saddle point configuration is distorted octa-site 
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Clustering of Hydrogen on screw dislocation 
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H + (H-SD) 0.2 0.51 

H + (H2-SD) 0.18 0.3 

H + (H3-SD) -0.1 0.18 

H + (H4-SD) -0.12 0.25 

Screw dislocation can trap several hydrogen atoms simultaneously, but incremental binding 

energy decreases with number of trapped H atoms (from 0.27 eV– down to 0.03 eV). 

Charge density maps [e-/Å3]  Binding energy [eV] 

Pure Fe One H added 

Two H added Three H added 
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H migration at 430 K for 25 ns 
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Hence, formation of stable H cluster must invoke some 

impurities to reduce the migration, for instance Carbon 
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Nucleation of stable Hydrogen cluster on dislocation 

A: Dislocation + cluster HN 
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Loop punching: growth of bubbles due to excess pressure via the emission of dislocation loops 

Jog punching: formation of vacancy jog to accommodate HN cluster + emission of interstitial jog 

No attraction of H in 

bulk – no way to form 

critical concentration. 

Clustering at 

dislocation core leads 

to jog emission at  
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Nucleation of stable Hydrogen cluster on dislocation 
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Nucleation of stable Hydrogen cluster on dislocation 
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Summary of atomic-scale data for H in Fe 

 H solution energy -2.33 (H adds to cohesion of Fe) – tetra-site  

 H-H binding in Fe 0.22 eV, and it reduces to 0.02 eV for H3-H cluster 

 H-vacancy binding 0.62 eV; one vacancy accepts 5 H atoms and does 
not growth further by emission of SIAs 

 H-dislocation binding 0.27 eV and 0.47 eV (SD & ED); jog-emission is 
not energetically favourable mechanism 

 H migration energy in bulk = 0.09 eV from tetra-to-tetra site;  

 H migration energy on screw dislocation = 0.05 eV;  

 H migration energy on edge dislocation  = 0.1 eV  

 

 Formation and growth of H defects resulting in blisters could be related 
to: 

 Nucleation of flake-like H clusters at GB interfaces, Carbide-GB interfaces 

 Growth of those defects by loop emission (as availability of H promotes 
plastic deformation) 
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Description of the model 

H source 
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steady state 

solution 
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outlook 

 Complete computational model 

 Assess formation of H clusters at grain boundaries and    Carbide-Fe 

interfaces 

 Assess interaction of H-vacancy-Carbon defects 

 Parametric study of the high flux plasma exposure 

 Exposure temperature : 450K – 850K (upper limit for RAFM) 

 Exposure dose : 5×1025 – 1027 D/m2 

Materials: Fe, Plastically deformed Fe; Eurofer97; “Clean Steel” (no Si 

& Mn) 
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Spare slides 
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Preliminary results 
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 High Flux D plasma exposure at Pilot PSI (NL) 

 Surface temperature: 950-970 K 

 Flux ~1024 D/m2 

 Fluence ~5×1025 D/m2 

 Reference measurements 

 E97; 


