

	Introduction	IPP
Sputte steel) is	ering of pure Fe (the main component of s too high!	
But: steel is not pure Fe		
RAFM steels (EUROFER, RUSFER, F82H) contain small amounts (0.4 to 1.0 at.%) of W		
Sputter \rightarrow W en	yield of W, Y _w , is much lower than Y _{Fe} nrichment / Fe depletion at the surface	
This phe	enomenon is called "preferential sputtering"	
Preferer the sput	ntial sputtering will lead to a continuous change ttering behavior	of
IAEA CRP "Steel", Vie	enna © W. Jacob, October 2017	6

EUROfusion tasks		
Example: Investigation of W enrichment at 450-500°C in GLADIS		
Exposure conditions:		
 H-beam: 2 MW/m², 17 keV, 1.3×10²¹ H/m²s, 30 sec pulse length 		
• Species: H ⁺ : 22% 17 keV H ₂ ⁺ : 43% 8.5 keV H ₃ ⁺ : 35% 5.7 keV		
• 1 st loading GLADIS fluence 10 ²⁴ H/m ²		
 analysis in Auriga 		
 2nd loading GLADIS fluence 10²⁵ H/m² (completed) analysis in Auriga 		
Some images after 1st loading		
IAEA CRP "Steel", Vienna © W. Jacob, October 2017 30		

