IAEA Second Research Coordination Meeting on Plasma-Wall Interaction with Reduced-Activation Steel Surfaces in Fusion Devices (2015-2020) IAEA Headquarters, Vienna, Austria, Oct. 16-18, 2017

PISCES -

Sputtering and D retention properties of RAFM steels under high-flux plasma exposure

D. Nishijima, <u>R.P. Doerner</u>, M.J. Baldwin Center for Energy Research, University of California - San Diego, La Jolla, CA, USA

Contents

1. Sputtering properties of RAFM steels

- First experimental determination of S/XB values of Fe I and Cr I lines
- Time evolution of element-resolved sputtered flux
- Temperature dependence of sputtering yield
- Surface morphology development
- 2. D retention properties of RAFM steels (preliminary)
 - Comparison between CLF-1, Eurofer, and F82H
- 3. LIBS thickness measurement of (Fe, Cr, Ni) mixed-material layers
 - New technique developed for layers thinner than ablation rate
 - Simultaneous composition analysis

Optical emission spectroscopy can provide elementresolved sputtered flux and sputtering yield.

Line-of-sight integrated emission intensity of sputtered atoms, I_a , can be converted into sputtered atomic flux, Γ_{spt} , with S/XB defined by,

$$G_{spt} = 4\rho \frac{S}{XB} I_a$$

S: Ionization rate coefficientX: Excitation rate coefficientB: Branching ratio

(Note that this relation is valid only when the geometrical loss flux from the observation volume is negligible.)

	Fe I	Cr I	WI			
Experimental S/XB	N/A	N/A	Available			
Theoretical S/XB	N/A	Available	Available			

Availability of S/XB for main elements in RAFM steel

S/XB values of Fe I and Cr I lines were experimentally determined for the first time.

PISCES

Center for Energy Research

$$G_{spt} = 4\rho \frac{S}{XB} I_{a} \implies \frac{S}{XB} = \frac{G_{spt}}{4\rho I_{a}} = \frac{YG_{i}}{4\rho I_{a}}$$
(a) Fe
Y: Sputtering yield from mass loss measurement
 Γ_{i} : Ion flux from single probe measurement
Fe I 422.7 nm
-- No theoretical data is available
-- Fit to a simple function:
 $\frac{S}{XB} = b \times \exp\left(-\frac{E_{ioni}}{T_{e}}\right)/\exp\left(-\frac{E_{ex}}{T_{e}}\right)$
Cr I 427.07 nm (425.4, 427.4, 428.9 nm)
-- A multiplet-averaged line
-- Good agreement with ADAS

4/18

Reduction of sputtering yield of Fe and Cr due to He plasma exposure is clearly observed.

- He plasma exposure
 Γ_i ~ (2-4)x10²² m⁻²s⁻¹
 E_i ~ 80 eV
- No W I lines were observed.
 - ➤ W was not sputtered.
 - Preferential sputtering of Fe and Cr.
- Decay of Γ_{spt}(Fe) and Γ_{spt}(Cr) is faster at T_s ~ 573 K than at T_s ~ 1053 K.
- $\Gamma_{\rm spt}({\rm Cr})/\Gamma_{\rm spt}({\rm Fe})$ is higher than the nominal bulk composition ratio (~0.088).
 - Diffusion of Cr is faster than that of Fe.

Good agreement of sputtering yield between spectroscopy & mass loss verifies that our measured S/XB values are valid.

PISCES

Comparison of the time- (fluence-) integrated F82H sputtering yields between the spectroscopic (Y_{spec}) and mass loss ($Y_{mass-loss}$) techniques.

The number of sputtered atoms from mass loss is calculated with the effective atomic mass (~55.5 amu) evaluated from spectroscopy.

Sputtering yield is found to be constant up to $T_s \sim 900$ K, and to be enhanced at $T_s > 900$ K.

PISCES

♦ He plasma exposure
 > E_i ~ 80 eV
 > φ_{He+} ~ 4.4+/-0.2x10²⁵ m⁻²

- ♦ Y(F82H) ≈ Y(CLF-1)
 - While the surface preparation is different between F82H (sanded) and CLF-1 (mirror-polished).

Surface enrichment of W due to preferential sputtering of Fe and Cr is confirmed with AES analysis.

- Fe may be preferentially removed by sanding, thus the surface composition of the unexposed surface strongly deviates from the bulk composition.
- The enrichment of W as well as the depletion of Fe and Cr are clearly seen, especially, at T_s < 900 K.
- The W enrichment is reduced at T_s > 900 K due presumably to the enhanced diffusion of Fe and Cr.

Cone-like structures become larger with increasing T_s , and W fuzz is formed on top of cones at $T_s \ge 973$ K.

In future fusion devices with RAFM steel first walls, T_s will need to be kept below 900 K from the sputtering point of view.

PISCES -

- S/XB values of Fe I 422.7 nm and Cr I 427.07 nm (425.4, 427.4, 428.9 nm) lines were experimentally determined for the first time.
 - Good agreement between Y_{spec} and Y_{mass-loss} confirms that the measured S/XB values are valid.
 - This enables us to study sputtering properties of RAFM steels in more detail with spectroscopy.
- High-flux He plasma exposure to RAFM steels at low E_i ~ 80 eV leads to the reduction of the sputtering yield.
 - Preferential sputtering of Fe and Cr
 - $\diamond\,$ Surface enrichment of W
 - Formation of sputter cone structures
 - ♦ W fuzz formation at $T_s \ge 973$ K on top

2. D retention properties of RAFM steels

PISCES

Chemical composition (wt%) of RAFM steels as well as commercially available P92 FM steel

	Cr	W	V	Та	С	Mn	Si	Ni
CLF-1	8.5	1.5	0.25	0.1	0.1	0.5	-	-
Eurofer	9	1.1	0.2	0.1	0.1	0.4	-	-
F82H	8	2	0.2	-	0.1	0.2	0.1	-
Rusfer	11	1.1	0.25	0.1	0.15	0.7	0.3	-
P92	8.5-9.5	1.5-2	0.15-0.25	-	0.07-0.13	0.3-0.6	≤ 0.5	≤ 0.4
			➢ Only elements with ≥ 0.1 wt%.					

P92 additionally contains Mo at 0.3-0.6 wt%.

- ◆ CLF-1, Eurofer, and F82H have been used in our experiments so far.
- ◆ But the number of these samples is very limited (no CLF-1 samples left).
- P92 may be used in future, since the composition of P92 is very similar to that of the RAFM steels.

D retention in CLF-1, Eurofer, and F82H RAFM steels were investigated under D plasma exposure in PISCES-A.

PISCES-A (2017) data shows, Eurofer is consistent with others, while CLF-1 is higher than others.

- PISCES-A (2017) data does not decrease with increasing the fluence. (Need more data points, though.)
- Why does D retention decrease with increasing the fluence???
- Why is D retention in F82H very low in PISCES-A?

PISCES

Center for Energ

Original graph from W. meeting & P. Wang, 16th PFMC (2017)

13/18

3. LIBS thickness measurement of layers thinner than ablation rate

PISCES

Develop a new method to measure

the ablation rate (less than a few

hundred nm).

the thickness of a layer thinner than

For a layer much thicker than the ablation rate

 Δd (nm) = R (nm/shot) x n

The new method utilizes the layer thickness dependence of the signal intensity as a calibration curve.

PISCES

Center for Energy

- The W I intensity depends strongly on the layer thickness up to around the ablation rate of bulk W.
- The film thickness can be obtained from the intensity below the ablation rate.
- Why does the intensity (I₁₂ and I₁₂₃) saturate above the ablation rate?
 - Fit function and coefficients

 $y = a(1 - \exp(-bx^c)).$

	а	b	с	R
1 burst	$3.4e19 \pm 1.6e18$	$2.5e-2 \pm 1.7e-2$	$\begin{array}{c} 0.88 \pm 0.18 \\ 1.02 \pm 0.11 \\ 1.02 \pm 0.14 \end{array}$	0.980
1 + 2 bursts	$3.5e19 \pm 8.2e17$	$1.6e-2 \pm 6.7e-3$		0.994
1 + 2 + 3 bursts	$3.6e19 \pm 1.1e18$	$1.7e-2 \pm 9.6e-3$		0.988

The underlying W layer below the ablated layer is significantly ejected as dust.

- The temporal evolution of ablated W plasma at the 1st burst was observed with an ICCD camera.
- Adhesion of the W layer to the mirror-polished Mo substrate may be weak.
- This can lead to the significant dust ejection.
- There was no W layer left after the 1st burst, and thus the W I intensity became very weak from the 2nd burst.

W layer ($\Delta d \sim 790 \text{ nm}$) on Mo

This new method also works with mixed-material layers.

Future work

D retention properties of RAFM steels

- Investigate the fluence and temperature dependence
- Investigate effect of He mixture
- Use commercially available P92 FM steel as a surrogate?

◆ In-situ real-time LIBS surface analysis during plasma exposure

Detect surface composition change due to preferential sputtering

