First CRP meeting Plasma-wall Interaction with Reduced-activation Steel Surfaces in Fusion Devices

Study the interaction of RAFM steel with laboratory and EAST plasma conditions

Wang Peng, Qiao Li, Zhang XueXi, Xu YuPing, Zhou Haishan, Luo Guang-Nan

Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Institute of Plasma Physics, Chinese Academy of Sciences Beihang University

- Sample preparation & native hydrogen releasing
- Deuterium retention in steel related re-deposited layer
- Permeation experiments of CLF-1 steel
- Summary

Introduction– Participates and research topics

Wang, Peng @ Vienna, First CRP meeting, 09/12/2015

Introduction– Participates and research topics

Research topics:

Erosion and D retention of RAFM steel exposed to laboratory plasma—LICP Erosion of RAFM steel by exposure to ECR plasma source Deuterium retention in RAFM steel and related re-deposition layer Performance of RAFM steel exposure to EAST tokamak plasmas—ASIPP Erosion and D retention of different RAFM steels using MAPES exposure

Simulation the D retention behavior in steel/iron-BeiHang

- Sample preparation & native hydrogen releasing
- Deuterium retention in steel related re-deposited layer
- Permeation experiments of CLF-1 steel
- Summary

Composition of RAFM steels (in wt.%) (Fe balance)											
	С	Cr	W	Mn	V	Та	Ν	Р	S	O ₂	
Eurofer 97	0.09- 0.12	8.5-9.5	1.0-1.2	0.2-0.6	0.15- 0.25	0.10- 0.14	0.015- 0.045	0.004- 0.005	0.003- 0.004	0.0013- 0.0018	
F82H	0.09	7.7	1.94	0.16	0.16	0.02	0.012	0.002	0.002	0.01	
CLAM (CLF-1)	0.11	8.5	1.5	0.5	0.25	0.1	0.02	0.003	/	0.002	

CLAM steel from ASIPP (Aug, 2015) Eurofer from IPP

Eurofer97/CLAM Steels - Before polishing:

- --- Technical finish of samples by the manufacture guaranteed an even thickness of all specimens
- --- Ultrasonic cleaning and mechanical removing of possible layer from cutting procedure

Current polishing procedure

- --- Polishing with increasingly fine-grained SiC grinding paper (P360-P800 -P200-P2000) (about 5 min each)
- --- Nap cloth 20 min with diamond suspension, 2-3 sprayings and polishing
- --- Nap cloth with 2.5% NaOH solution (in water) 10min
- --- 5 min flushing with water on the Nap cloth
- --- ALL 6 sides are polished with a main side polished to a mirror-like surface

Sample preparation

Sample preparation

Sample preparation

Wang, Peng @ Vienna, First CRP meeting, 09/12/2015

Native hydrogen releasing

- Sample preparation & native hydrogen releasing
- Deuterium retention in steel related re-deposited layer
- Permeation experiments of CLF-1 steel
- Summary

Re-deposition layer preparation Atmosphere: Ar & D₂ Pressure: 0.75 Pa Target: iron and chromiun

 Steel used as first wall material will inevitably be sputtered and re-deposited on wall

 ✓ Fe & Cr layers deposited by magnetron sputtering were used as a model system to study the D retention and releasing behaviors of re-deposited layer

> Deuterium implantation CCP plasma: Pressure: 1.0 Pa Bias: -200 V Substrate T: ~400 K Flux: 2×10^{18} D s⁻¹ m⁻² Fluence: 1.4×10^{23} D m⁻²

Deuterium releasing from Fe, Cr layers before and after deuterium implantation

Total deuterium retention as a function of incident fluence

- Sample preparation & native hydrogen releasing
- Deuterium retention in steel related re-deposited layer
- Permeation experiments of CLF-1 steel
- Summary

Experimental procedure

Alloy element	Cr	С	w	Ta Mn		V	N	
Content control	8.5±0.3	0.11±0.015	1.5±0.2	0.10±0.03	0.5±0.2	0.3±0.1	0.02-0.035	
Impurity	S	Р	Ti	В	Nb	0	Ni	Mo
Content control	<0.005	<0.005	<0.01	<0.005	<0.01	<0.005	<0.01	<0.01
Impurity	Cu	AI	Si	Co	As	Sn	Sb	Zr
Content control	<0.01	<0.03	<0.05	<0.01	As+Sn+Sb+Zr<0.05			

Chemical composition of CLF-1 steels

Reference: P H Wang , report at Chendu, 2013

He ions implantation Energy: 3.5 MeV Flux: 5×10¹¹ ions/(cm² s) Temperature: R.T

GDP (gas driven permeation)
Sample held by VCR couplings.
Temperature: 350-550 °C
Driving pressure: 10³ Pa-10⁵ Pa

▷ D₂ exposure and TDS Exposure temperature: 350 °C Exposure pressure: 8 × 10⁴ Pa TDS temperature rate: 1 °C/s TDS temperature range: R.T – 1000 °C

He ions irradiation

0.06 1.00E+020 0.05 ົ້ຂ He distibution 8.00E+019 Damage 0.04 0 0 6.00E+019 Damage (dpa 0.03 Distribution 4.00E+019 2.00E+019 0.02 0.01 ር ቋ 0.00E+000 0.00 40000 60000 20000 80000 100000 Target depth (A)

SRIM caculation

No.DPA Peak
valueHe implantation
ions/m²10.001 6×10^{17} 20.01 6×10^{18} 30.05 3×10^{19}

4.5 MV electrostatic accelerator in Peking University

Three groups of irradiated CLF-1 steel samples were got with one sample for permeation experiment and one for D_2 exposure and TDS in one group.

GDP results of virgin CLF-1 steel

The permeability (mol·m⁻¹·s⁻¹·Pa^{-1/2}) of the virgin CLF-1 sample can be described by : $P_{clf-1}=6.36 \times 10^{-8} exp\left(\frac{-0.43[eV]}{kt}\right);$ The diffusion coefficient (m²·s⁻¹) : $D_{clf-1}=3.71 \times 10^{-7} exp\left(\frac{-0.23[eV]}{kt}\right);$

For each irradiated sample, the GDP experiments were performed from low temperature to high temperature and back to low temperature again.

Influence on Deuterium Retention

As the amount of helium implantation is too small, the mess 4 signal in the TDS is only from D₂ gas.

- **>** Both the samples show three main peaks, 210 °C, 380 °C, 645 °C.
- > The irradiated sample shows larger retention than that of virgin sample after exposure to deuterium gas at the same condition

More work on RAFMs

- Heavy ions irradiation effect on the microstructure and the hydrogen isotope permeation and retention behavior (Ongoing).
- Evaluation of RAFMs as the plasma-facing material by the material and plasma evaluation system (MAPES) in the EAST tokamak (Ongoing).
- Explore the technique to obtain α-Al₂O₃ at low temperature on RAFMs as tritium permeation barrier (Planning)

MAPES on EAST

Wang, Peng @ Vienna, First CRP meeting, 09/12/2015

- Sample preparation & native hydrogen releasing
- Deuterium retention in steel related re-deposited layer
- Permeation experiments of CLF-1 steel
- Summary

What we have done:

- 1. Prepare CLAM and Eurofer samples for laboratory plasma exposure
- 2. Investigate the deuterium retention in steel related re-deposition layer
- 3. Study the influence of He ions irradiation on deuterium retention and permeation

What we plan to do:

- 1. Study the erosion and deuterium retention of steel under the laboratory plasma
- 2. Investigate the performance of different RAFM steel in EAST plasma condition
- 3. Simulation the D retention behavior in steel/iron

Thank you for your attention!

Wang, Peng @ Vienna, First CRP meeting, 09/12/2015