Interaction of high flux plasma with RAFM steels: experimental and computational assessment

(Eurofer 97 and advanced grades improved by thermomechanical treatment)

Dmitry Terentyev, Lorenzo Malerba, Athina Puype, Anastasia Bakaeva

SCK-CEN, Belgian Nuclear Research Centre

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

SCK•CEN in short

- Cradle of Belgian nuclear research, applications and energy development in Belgium
- Major international player in the field of nuclear R&D
- ~700 staff, >50% with academic degree + 70 PhD students
- Annual turnover: 140 M€
 - 45% government support
 - 55% contract work

Outline

Part I

- Non-equilibrium D trapping under high flux plasma exposure: lessons learned by studying Tungsten
- Computational model to consider Non-equilibrium trapping and its connection to diffusion limited trapping
- Essential information from atomistic scale

Part II

- Standard and improved high-Cr grades
- Available improved 9-Cr batches
- Preliminary tests including high flux plasma exposure
- Work plan

Part I

Part I

- Non-equilibrium D trapping under high flux plasma exposure: lessons learned by studying Tungsten
- Computational model to consider Non-equilibrium trapping and its connection to diffusion limited trapping
- Essential information from atomistic scale

- 0.1 non-recrystallized W samples QMS D₂ signal (arb. units) ----- recrystallized (1700 K) --- recrystallized (2000 K) No histor 3. Duterium concentration 1E-3 1E-4 m²) history shots (10²⁷ m⁻²) history 2 [1] 1E-5 900 300 600 1200 Temperature (K) Depth. um D_2 release, 10¹³ s⁻¹ 4 W 3 $5*10^{25} \text{ m}^{-2}$ 2 (1 shot) 400 600 800 1000 1200 Temperature, K 10¹³ s⁻¹ 4 W 10^{27} m^{-2} 3 D₂ release, ' (20 shots) 2 400 800 1000 1200 600 Temperature, K
- Typical penetration depth ~ several µm
- Intensive blistering with pronounced by-modal size distribution
- TDS spectra: 3 release stages
- Intensity of the high T stage correlates with blister pattern

[1] M. Balden, S. Lindig, A. Manhard, J.-H. You, Journal of Nuclear Materials 414 (2011) 69-72.

Copyright © 2014 SCK•CEN

Depth distribution & sub-surface trapping

Tanabe et.al.

Depth distribution

Three zones defining distribution

- ~nm
- 🔵 ~ μm
- 🛯 ~ mm

Tanabe et.al.

High heat flux plasma exposures

High flux plasma changes sub-surface

- Compressive stresses in sub-surface region generate:
 - Dense dislocation network
 - Limited within 10-15 μm
- Poly-crystalline (ITER-specification)

100 nm

High flux plasma changes sub-surface

- Compressive stresses in sub-surface region generate:
 - Dense dislocation network
 - Limited within 10-15 μm
- Poly-crystalline (ITER-specification)
 Recrystallized at 1600C (1h)

High flux plasma changes sub-surface

- Compressive stresses in sub-surface region generate:
 - Dense dislocation network
 - Limited within 10-15 μm
- Single crystal (110 orientation)

NRA range

- Select large grain (pre-characterized) material: Recrystallized W
- Perform controlled deformation: Tensile test on macro sample
- Sub-threshold plasma exposure: PILOT PSI, T=470K, flux ~10²⁵ D²/m²/sec
- Exposure flux: 10, 70, 500 sec i.e. up to 5×10²⁷
- PIE sequence: SEM; TEM; TDS; SEM

Copyright © 2014

[1] H. Mecking, U.F. Kocks, Acta Metal. 29 (1981) 1865; [2] H. Sheng, G. Van Oost, et.al., J. Nucl. Mat. 444 (2014) 214. SCK-CEN

SEI 20kV WD13mm SS46 W deformed: 1 shot x22,000 1µm

15 May 2014

SEI 20kV WD18mm SS46 W ref. H: 1 shot x4,300 5µm

15 May 2014

growth by loop punching)

15 May 201

WD18mm

x4.500

Plastic deformation promotes nucleation of H bubbles

Copyright © 2014 SCK•CEN

Our understanding of sub-surface trappin

- Establishment of steady-state D profile
- Compensation of compressive stresses by plastic deformation
- Dislocation network acts as trapping & nucleation source
- Nano-metric bubbles get to steady-state
- Pathway to validate/rationalize the hypothesis
 - nypothesis
 Characterize trapping & nucleation on dislocations: atomistic sim.
 Pass atomistic data to Mean Field (kinetic rate)
 - theory) for non-equilibrium nucleation
 - Combine with classical MF (diffusion limited)

Hypothesis about trapping on dislocations

- Experimental and theoretical 'facts':
 - H-H do not form clusters: no self-trapping like for He
 Binding (H-H)=0.02; (H₂-H)=0.01, (H₃-H)=0.02; (H₄-H)=0.03 eV [1]
 - Migration energy = 0.4 eV

 $\,$ $\bullet\,$ H atom covers 30 μm within 1 ms: all permeated H immediately get trapped

- Typical µ-structure of commercial W grades:
 - Dislocations, sub-grains, random grains
 - Porosity, Impurity
- Possible mechanisms of bubble nucleation <u>without vacancies</u>:

Interaction of Hydrogen with screw dislocation

[1] D. Terentyev et.al. Nuclear Fusion Lett. 54 (2014) 042002.

Copyright © 2014 SCK•CEN

4/15

Clustering of Hydrogen on screw dislocation

Screw dislocation can trap several hydrogen atoms simultaneously, but incremental binding energy decreases with number of trapped H atoms (from 0.6 – down to 0.25 eV).

5/15

Nucleation of stable Hydrogen cluster on dislocation

Loop punching: growth of bubbles due to excess pressure via the emission of dislocation loops

Jog punching: formation of vacancy jog to accommodate H_N cluster + emission of interstitial jog

6/15

Description of the model

Copyright © 2014 SCK•CEN Computational model results & prototype tool

Estimation of experimental conditions for H bubble formation and surface blistering

 Steady state solution for diffusion in a field of traps
 1200 - Dislocation-mediated re Dislocation density or = 0.5x10

hydrogen atom

interstitial jog

•
$$C(x) = C_0 \exp(-xk_D)$$

- $k_D = \sqrt{\rho}$ for dislocations
- $k_{GB} \sim d$ for grain boundaries

dislocation line

acancy jog

Model of H retention

Two zoned retention

<u>10 μm</u>

C sub surface

Concentration

- Dynamic retention in sub surface region
- Trapping on natural defects in the bulk area

10 - 1000 μm

C bulk

Depth

Release of trapped H

- Release from bulk and diffusion to the surface
- Concentration of H is defined by trapping and growth at low angle grain boundaries
- Binding energy of 2.0 eV Binding energy of 2.0 eV

 $C_{\rm B} = 3.92^{*}10^{-7}$

Depth

Concentration

*10-5

Ш

Part II

Part II

- Standard and improved high-Cr grades
- Available improved 9-Cr batches
- Preliminary tests including high flux plasma exposure

Radiation effects in structural materials

Standard and improved high-Cr grades for Fusion Appl.

- One principle problem of 9-Cr steels: low temperature embrittlement
- Second one: creep, limiting application up to 650C

Standard and improved high-Cr grades for Fusion Appl.

- Plastic flow instability
 - Dynamic absorption of defects
 - Drastic softening of matrix

Journal of Nuclear Materials 351 (2006) 269-284

How to reduce DBTT and enhance creep resistance

- Modify precipitate distribution
 - Change ratio MC to MX
 - Modify H-treatment
 - Modify Composition
- V and Nb:
 - Stabilize grains
 - Reduce grain coarsening
 - Increase ductility
- 9Cr remains optimum
 - Less Cr poor corrosion resist
 - More Cr hardening (α) and δ-ferrite

SCK.CEN

Advanced Thermo-Mechanical Treatment: TMT

Experimental Procedure

Composition of the 9wt% Cr RAFM steel batches 2014

Wt%	С	Cr	Mn	N2	Та	V	W
0.09Ta	0.11	9.13	0.40	0.011	0.09	0.23	1.04
0.11Ta	0.11	9.24	0.39	0.011	0.11	0.23	1.07

Advanced Thermo-Mechanical Treatment: TMT

0.09Ta	Pass 1		Pass 2		Pass 3		Pass 4		Pass 5		Pass 6	
	Т	%	Т	%	Т	%	Т	%	Т	%	Т	%
\cup	1200	19.547	1150	25	1100	30	960	30	900	30	<mark>850</mark>	30
	Dage 1 Dage 2 Da				Daga 2 Daga 4		Daga E		Daga 6			
-	Dev		Day		Dec		Dag	aa 4	Dec	n E	Dee	- F
\bigcirc	Pa	ss 1	Pas	ss 2	Pas	ss 3	Pas	ss 4	Pas	s 5	Pas	s 6
2	Pa: T	ss 1 %	Pas T	ss 2 %	Pas T	ss 3 %	Pas T	ss 4 %	Pas T	s 5 %	Pas T	s 6 %

Copyright © 2014 SCK•CEN

Precipitation of Vanadium and Tantalum

Fraction of elements that precipitate at different stages of Q&T treatment

Wt%	Cr	Та	V
0.09Ta	9.3	0.086	0.22

wt%V & wt%Ta precipitated

%Vprec 920°C ■ %Vprec 980°C ■ %Taprec 980°C Martensite structure and carbide measurements

Copyright © 2014 SCK•CEN

AV, Eq 1

Upper level

Copyright © 2014 SCK•CEN

- High Flux D plasma exposure at Pilot PSI (NL)
 - Surface temperature: 430-450K
 - Flux ~10²⁴ D/m²
 - Fluence ~5×10²⁵ D/m²
- Reference measurements
 T91; E97

Exposure at 430-450K: Blisters and individual grains

NRA/TEM analysis to be done to confirm sub-surface retention & μ -structure modification

Exposure at 430-450K: reference vs. advanced grade

Chemical analysis to be done to confirm observations of Carbides at surface

High Flux D plasma exposure at Pilot PSI (NL)

- Surface temperature: 950-970 K
- Flux ~10²⁴ D/m²
 - Fluence ~5×10²⁵ D/m²
- Reference measurements

• E97;

