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(& Introduction W

What do we need to answer the question:

Can we use RAFM steels at some areas of
the first wall of a future fusion power plant?

Certainly, steel is not an option for areas receiving
a high power load and high particle flux.

And probably also not for areas receiving a non-
negligible ion (plasma) flux.

IAEA CRP “Steel”, Vienna © W. Jacob, December 2015 2
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(& Introduction

Why should we use RAFM (reduced
activation ferritic-martensitic) steel at all?

*Blanket modules for the first wall blankets
are made of RAFM steel

* Technologically it would be much easier and

less expensive

*H retention in RAFM steels is low, even

lower than in W
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(& Hydrogen retention

H isotope retention in steels even lower than in W
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[2] ITPA SOL/Div topical group / B. Lipschultz et al., MIT report PSFC/RR-10-4
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(& Introduction W

So what is the problem in using steel?

IAEA CRP “Steel”, Vienna © W. Jacob, December 2015 5
@ EUROfusion  Introduction: Sputter Yields of Fe and W W
QO Energy dependence of sputtering 10°

yield of Fe and W measured by D> Fe, W
weight loss & RBS
(perpendicular ion incidence) = 101 4
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d In relevant E region (50 to 1000 eV) Sputtering yields of Fe and W due to D bombardment
% as a function of D energy.
YFe >10 YW - Open circle: determined by weight-loss measurement,
- Closed circle: determined by RBS (Rutherford Backscattering
- Fe (steel) not useable as PFM Spectrometry).

- The curve is derived from the fitting by Bohdansky formula.
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(& Introduction W

Sputtering of pure Fe (the main component of
steel) is too high!

But: steel is not pure Fe

RAFM steels (EUROFER, RUSFER, F82H)
contain small amounts (0.4 to 1.0 at.%) of W

Sputter yield of W, Y\, is much lower than Y,
-> W enrichment / Fe depletion at the surface

This phenomenon is called “preferential sputtering”

Preferential sputtering will lead to a continuous change of
the sputtering behavior

IAEA CRP “Steel”, Vienna © W. Jacob, December 2015 7
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@\0 Introduction: SDTrimSP W

The dynamic surface evolution due to preferential sputtering

can be simulated by SDTrimSP

Q SDTrimSP: dynamic version of TRIM.SP [1] (an earlier version was called TRIDYN [2])

U TRIM.SP describes the sputtering of surfaces due to impact of energetic species in

the binary collision approximation
O TRIM.SP is well established and benchmarked with numerous experimental results

O SDTrimSP takes into account dynamic changes at the surface during sputtering, for

example those due to preferential sputtering [3]

Q Important for extrapolation to conditions not (easily) accessible to experiments
(e.g. sputtering by tritium)
[1] W. Eckstein, Springer Series in Materials Science, Springer, Berlin, 1991

[2] W. Mdller, W. Eckstein, J. P. Biersack, Comput. Phys. Comm. 51 (1988) 355
[3] Mutzke et al., IPP Report #12/8 “SDTrimSP, Version 5.00%, 2011
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(& SDTrimSP results: Dynamic Behaviour W

0 RAFM steels contain W which has a much lower sputter yield than Fe etc.
- Preferential sputtering leads to W enrichment due to the difference of sputtering yields.
- Erosion yield is reduced.

: : : : : : : : :
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200 eV D on FeW with 4.2 % W 25 200 eV D on FeW with 4.2 % W
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Dynamic surface evolution due to preferential sputtering
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(@) Preferential Sputteri
{ké’,ﬂ reterential sputtering

The two most important factors for preferential sputtering:

» Max transferable energy for a given projectile/target combination
+ Surface binding energy

MM,

Energy transfer in binary collisions: T. =4 —

Mo M To

(ineV)

Don W 2 184 0043 8.6
D on Fe 2 56 0133 26.6

Surface binding energy of W (in W!) = 8.7 eV
Fe(inFel)= 4.4 eV
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@\0 Preferential Sputtering W

Preferential sputtering

*Leads to enrichment of one component (transient
phase until steady state)

* Reduces total sputter yield

« Effect increases with difference of sputter yield of
the 2 components

* Occurs for all energies, but is strongest in the
region between the 2 threshold energies

SDTrimSP can simulate the dynamic surface
evolution due to preferential sputtering
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u\;w Experiment: Sample Preparation W

Preparation of EUROFER samples (W conc. = 0.42 at%)

O Specimens cut out from a EUROFER sheet
(EUROFER 97-2 [heat 993 393])

O Surface polished to mirror-finish and pre-annealed at 800 K.

Preparation of Fe/W binary system layers as
“model” of RAFM steel

0 Deposition by magnetron-sputtering from Fe and W targets

0 Composition variable: Prepared W concentrations: 0.7, 1.5 and 4.2 at%.

Fe/W model layers are used for benchmarking
of SDTrimSP simulations.
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@\ﬂ Experiment: D Irradiation W

D ion irradiation & plasma exposure

“High current ion source (HSQ)” ion-beam set-up (IPP-Garching)

o Conditions well-defined:
mass-separated mono-energetic D;* ion beam
O But relatively low D flux < 10" m-2s™

“PISCES-A” linear plasma device (UCSD) and

Linear plasma device “PSI-2” (FZJ)

a High flux (D*, D,*, D3*) plasma ~ 102" D*/m?2s

O But possible influences of plasma impurities (e.g. O) and redeposition

IAEA CRP “Steel”, Vienna © W. Jacob, December 2015 13
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Qi Experiment: Post-irradiation Analysis W

Post-irradiation analysis

O Weight-loss measurement

- the only applicable technique to determine the sputtering yield of
bulk materials, e.g., EUROFER steel

O Rutherford Backscattering Spectroscopy (RBS)

- with 1 MeV “He*: determination of surface composition and
measurement of sputtered amount

O Scanning Electron Microscopy (SEM)

- Surface morphology examination

IAEA CRP “Steel”, Vienna © W. Jacob, December 2015 14




(@ Experiment: Post-irradiation Analysis W

O Surface composition changes with D irradiation fluence (HSQ exposure).

a W concentration at the top surface increases with fluence (for all D impinging energies).

HSQ: 200 eV/D > Fe/W, 5 ..o, HSQ: 200 eV/D > EUROFER (W: 0.5 at.%)
10 \ . . )
RBS with 1.0 MeV *He*,
Incident angle of 75~ -
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RBS spectra obtained from Fe/W 5 oo, and EUROFER steel irradiated by 200 eV/D with different fluences:
1.0e22, 1.0e23 and 1.0e24 D/m?.

- Predicted effect of surface enrichment experimentally proven
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(@) Erosion of Fe/W Model L
\l\\\é;ﬂ rosion or re odel Layers

Decrease of sputter yield with increasing fluence

HSQ: D > Fe-W, 5 ..,

100
Q Initial level similar to that for pure «100 VD
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Sputtering yield of Fe/W (W ~1.5 at.%) layer by Dion
irradiation with different D energies as a function of D fluence
(320 K)
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®) Erosion of Fe/W Model L
\1\\\5),0 rosion o e oade ayers

Decrease of sputter yield with increasing fluence

HSQ: 200 eV D >Fe-W,

Q Initial level similar to that for pure ] (oW 0.7 2% |
Fe (Ye) (solid lines) ] oW 1.5at%
. = 'W: 4.2 81.%
O Clear decrease with fluence = 2
(in range of = 1023 D/m2) =
B
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Sputtering yield of Fe/W layers with different W content
Iayer. by 200 eV/D ion irradliation as a function of D fluence
(320 K)
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© Erosion of EUROFER I
Q Yield reduction in the higher fluence
23 2
rar;ge (= 1022 D/m?), as well as for o0 HSQ: D > EUROFER
Fe/W layer. T R R LR
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= 5008V/D
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Sputtering yield of EUROFER steel by D ion irradiation with
different D energies as a function of D fluence (320 K)

[1]J. Roth et al., J. Nucl. Mater. 454 (2014) 1
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uféw Comparison SDTrimSP — Experiment W

U Fe/W binary layers: Experimental 0.1
dgta. and SDTrimSP result agree N 1000 6V/D
within ~ 30 % 2 008
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Comparison of sputtering yields between SDTrimSP calculation
result and experimental data obtained for Fe/W binary layers
with different W content.
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(& Temperature Dependence

U Exposure of EUROFER to low-energy
(140 eV/D*) / high-flux (~102' D*/m?2s)
plasma at various temperatures (370
- 870 K).

U Sputtering yield varies within a limited
range at < ~800 K, while it clearly
increases at 870 K.

- consistent trend with the numerical
prediction.

- No clear temperature dependence of
sputtering in the DEMO FW working
temperature range (< 800 K)

[1]J. Roth et al., J. Nucl. Mater. 454 (2014) 1

PISCES-A: 140 eV/D*, 1.3E24 D/m?
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Sputtering yield of EUROFER steel by 140 eV/D* exposure as
a function of exposure temperature (measured at PISCES-A)
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Surface Morphology

Surface morphology change of EUROFER

0 EUROFER surface sputtering is not homogeneous...:
- grain-dependent erosion.
- high-Z precipitates.
- nano-scale roughness.

o

SEM images of EUROFER steels: as-deposited and after D irradiation with 200 eV/D, 1.0624 D/m?.

| HSQ: 200eV/D, 320 K, 1.024 D/m? |

IAEA CRP “Steel”, Vienna © W. Jacob, December 2015
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Surface Morphology

(

Q Irradiation of EUROFER by low-flux
(~10"° D/m2s) D ion beam in HSQ at
several temperatures (320 - 770 K).

HSQ: 200eV/D, 320 K, 1.0¢24 D/m? |

- Development of surface topography
is strongly affected by the exposure
temperature.

IAEA CRP “Steel”, Vienna © W. Jacob, December 2015
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Surface Morphology W

U EUROFER exposed to PISCES-A plasma: Development of surface
topography is strongly affected by the exposure temperature as well.

T
,1.3624 D*/m? ¥l

Rt O g

140 eV/D", 400 K, 1.3e24 D*/m? [+ st M 140
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Qi Surface Morphology
PSI-2: 555 K, 90 eV, 2.6x10% D m?2 M) 0LICH
surface
UL Dl St G 1000
cross
section
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g\\ég,p Open questions W

Temperature Dependence

» T dependence of sputter yield
* Onset of diffusion (counteracting enrichment?)
» T dependence of surface morphology

Impurity sputtering

» Higher mass - higher sputtering of W
* lons: higher energy due to sheath acceleration

IAEA CRP “Steel”, Vienna © W. Jacob, December 2015 25
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(@ Summary

* Erosion of RAFM steel and model systems was
investigated in ion beam experiment and in linear plasma
devices

+ Surface enrichment of W and reduction of sputter yield
were experimentally proven

* For the model layers reasonable agreement with
theoretical predictions (SDTrimSP)

* Reduction of EUROFER sputter yield by factor
up to 8 (at 200 eV)

* Reduction possibly strongly influenced by surface
morphology development

* H retention in steel is low (even lower than in W)

/f This work has partially been carried out within the framework of the EUROfusion Consortium and has received
= ] funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053.
@I) E U ROfUSJOn The views and opinions expressed hereindo not necessarily reflectthose of the European Commission.

Work performed under EUROfusion WP PFC.
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(@ Summary

Where could RAFM steel be used?
* First wall in areas without plasma contact
* Impinging flux “only” CX neutrals

* CX neutrals have a very wide E distribution, but dominantly
low-E (< 200 eV) hydrogen isotopes

» Under such conditions W enrichment (and the corresponding
reduction of the sputter yield) might be effective

Why “no plasma contact™?

* Impurity ions (higher mass and higher energy)

» Higher mass - better E transfer > higher sputtering of W
* lons, sheath acceleration - higher E = higher sputtering

» Under such conditions W enrichment probably not effective

This work has partially been carried out within the framework of the EUROfusion Consortium and has received

oy ] funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053.
@.} E U ROfUSJO!’] The views and opinions expressed hereindo not necessarily reflectthose of the European Commission.

Work performed under EUROfusion WP PFC.
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@) What is still needed?

What do we need to answer the question:

Can we use RAFM steels at some areas of the first wall of a
future fusion power plant?

What is still needed?

« From lab results: better understanding of T dependence
and surface morphology effects

* Improved surface diagnostics
* Influence of impurities

« From the fusion plasma side: mass and energy
distribution of impinging particle fluxes

Work performed under EUROfusion WP PFC.

/f This work has partially been carried out within the framework of the EUROfusion Consortium and has received
= ] funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053.
@I) E U ROfUSJOn The views and opinions expressed hereindo not necessarily reflectthose of the European Commission.

14



