

Motivation: Hybrid reactor project in Russia

Strategy 2013 for Fusion-Fission development in Russia

DEMO-FNS(fusion neutron source)

- the key facility in the hybrid branch of the Russian fusion program
- construction planned by 2023

PHP (Pilot Hybrid Plant)

construction is planned by 2030

Demonstration

DEMO-FNS
 Tritium breeding
 Minor actinides (MA) incineration
 Fissile nuclide production
 Destruction of long life radionuclides
•Heat transfer

 Tritium breeding and production
 Destruction of MA and long life radionuclides
 Electric power production
 Fissile nuclides production

Anna V. Golubeva

FNS current status

- This project is realized in collaboration of Kurchatov institute with public corporations NIIEFA, NIKIET, VNIPIET, VNIINM, SPb Polytechnic University and Controlled Fusion Center
- The current level of the design corresponds to conceptual one. The engineering design stage will be completed in 2015
- We have started manufacturing of mockups for VV, divertor

Anna V. Golubeva

Motivation: Fusion Neutron Source project in Russia

For **FNS** (fusion neutron source) and **PHP** (Pilot Hybrid Plant) construction

native materials are supposed to be used

For **FNS** steel is a wall materials, but in any case retention and permeation of hydrogen through steel are very important topics of investigation

Ann	a V. Go	lubeva	1												
	γ-I Im ter	ohase Ipr. Lo rm cre	stab., ng- ep	Sti for HT	rong c mer, ſ strer	arbide	e γ-β Ni for	γ -phase stab., Ni repl., \downarrow crit. cooling rate for martecite formation					Strong carbide former, stab. γ-phase, Mo replacemen		
Martencite formation					Corrosion Grain refin resistance red. ↓-pha					neme nase	ement, se				
		Ni	С	N	Si	Ti	V	Cr	Mn	Fe	Zr	Ce	Та	w	
ferritic- martensitic	Rusfer (EK-181)	0.03	0.16	0.07	0.4	0.05	0.4	12	0.6		0.05	0.05	0.15	1.3	
	EUROFER		0.1	0.01 5- 0.04 5			0.15- 0.25	9.2	0.2- 0.6	BASIS			0.05- 0.09	1-1.2	
Austenitic	ChS-68	14.0- 15.5	0.05 - 0.08	<0.0 2	0.3- 0.6	0.2- 0.5	0.1- 0.3	15,5 -17	1.3- 2.0						
	S316 N)-IG	12	0.01 5	0.06	0.5	0.15		17	1.6				0,01		

Anna V. Golubeva

NRC 'Kurchatov Institute', Moscow, Russia

Retention and permeation of hydrogen isotopes through RAFM RUSFER-EK-181

Anna V. Golubeva

Motivation: Fusion Neutron Source project in Russia

Anna V. Golubeva

Requirements for materials for fusion reactors and fusion neutron sources:

- Stable properties at fast neutron irradiation
 DEMO 8-10 MW year/m²
 70 80 dpa
 FNS & FPP 10-15 MW year/m²
 150 200 dpa.
 - Fast decay of radioactivity
- Small neutron capture cross-section (for fusion neutron source)
- · Small n-irradiation influence on properties
- · High thermal conductivity
- · Low permeation for hydrogen isotopes
- Low hydrogen retention

ITER to DEMO & FPP -

widening of temperature, mechanical and neutron irradiation dose application windows

New structural materials are required

Anna V. Golubeva

Rusfer (EK-181, Fe-12Cr-2W-V-Ta-B-C)

Manufacturer - A.A. Bochvar High-technology Research Institute of Inorganic Materials (VNIINM), Russia

Composition – Fe-12Cr-2W-V-Ta-B-C.

Available: Almost Industrial: ingots up to 500 kg, rolled sheets, tubes. Temperature window: (300)350-670(700-750) °C. Advantages & disadvantages

+ - reduced activation

- no swelling (<100 dpa)

- ductile

industry fabrication

Rusfer properties will be investigated in frame of Russian fission programs (incl. tests in FBR)

- low heat resistance

- no high n dose tests (>100 dpa),

Some additional tests are necessary for fusion application:

- Hydrogen retention
- Gas and plasma-driven permeation of hydrogen - Influence of fusion neutron spectra on RAFMs properties

Anna V. Golubeva

Institutions involved in our research

NRC 'Kurchatov Institute', Moscow, Russia coordination - exposure in gas and plasma - permeation experiments

TRINITI, Troitsk, Russia U PUUN - exposure to high heat fluxes

- exposure to high density plasma

A.A. Bochvar Institute of Inorganic Materials, Moscow, Russia - producing RUSFER - testing physical & mechanical properties

Max-Planck-Institut fuer Plasmaphysik, Garching, Germany retention analysis

Anna V. Golubeva

Persons involved in our research

N.P. Bobyr, D.I. Cherkez, A.V. Golubeva, B.I. Khripunov, V.B. Petrov, A.V. Spitsyn,

U PULLE N.S. Klimov, A. Putrik

V.M. Chernov, M.V. Leontieva-Smirnova

Yu. M. Gasparyan, V.S. Efimov

M. Mayer, V.Kh. Alimov, O.V. Ogorodnikova

Anna V. Golubeva

Deuterium permeation: PIM, Kurchatov institute

Anna V. Golubeva

Anna V. Golubeva

Investigated samples

FACILITIES

ChS-68

Tubes

• Rusfer EK-181

(L=250 mm; d1= 5,85 mm; d2 = 6.95mm;)

Heating - Ohmic

Gas loading: ATLAN, Kurchatov institute

Gas: H₂, D₂, CO, N₂, Ar Gas pressure: 10-4 - 104 Pa Temperature: 290 - 1023 K

Anna V. Golubeva

QSPA (Quasistationary plasma accelerator), TRINITI

 Heat load Pulse duration

•

.

QSPA facility provides adequate pulse durations and energy densities. It is applied for erosion measurement in conditions relevant to ITER ELMs and disruptions

Steady-state plasmas are used to study plasma-surface interactions, divertor physics and test candidate plasma facing materials for fusion application

Electron beam is used to generate plasma in crossed E L B fields

Axial magnetic field 0,2 T 15 kW Injector power Plasma density 10¹¹÷5×10¹³ cm⁻³ Electron temperature 0.5+30 eV Plasma flux 10¹⁷÷10¹⁹ ion/c × cm⁻² Plasma fluence 10²⁴ ion/cm² 10 ÷ 500 eV lon energy Sample temperature RT + 1800 K

QSPA plasma parameters (ELMs):

Plasma stream diameter

Ion impact energy

QSPA plasma gun

 $0.5 \div 5 M J/m^2$

0.1 ÷ 0.6 ms

6 cm 0.1 ÷ 1.0 keV

Ę	017 04)				0
2/1/	_3/	4	6/	1/	

1 - coil of pulse electromagnetic gas

- valve; 2 - valve disk; 3 - volume of pulse
- valve;
- 4 isolator; 5 gas supply tube; 6 cathode; 7 anode.

QSPA-T heat loads

We used 5, 10 or 50 pulses of 0.5 MJ/m^2 with a duration of 0.5 ms)

In a fusion reactor SS are shielded. Direct contact of plasma with SS is excluded. But the photon flash heating provoked by the mitigation of disruptions at high stored energy can cause repetitive melting of it surfaces.

A. Spitsyn

TDS stand, MEPhl

Anna V. Golubeva

Hydrogen isotopes interaction with RUSFER – What is already done by our group

- Deuterium retention (from gas and from plasma)
- Deuterium retention in damaged material
- Deuterium permeation

Anna V. Golubeva

Structure changes of materials at annealing

NRA, IPP Garhing

Tandem accelerator of E2M division

Collaboration in a frame of HGF-RFBR joint research

D+ ³He \rightarrow p+⁴He.

D depth-profile up to 14 µm

β-ray induced x-ray spectrometry UNIVERSITY OF TOYAMA Dr. Yu. Hatano (1) Imaging Plate (IP)

The method is applicable to the preliminary analysis of tritium trapping in the surface layer. For further investigations more accurate methods can be used

Structure changes of materials at annealing

Anna V. Golubeva

Anna V. Golubeva

Deuterium retention in RUSFER from gas

- Concentration of D in RAFMs is relatively low (10-3-10-2 at%)

- Deuterium retention is attributed to trapping in the very near-surface layer (~0.2 mkm);

-The dependence of D retention on gas pressure is very weak (at T=693 K the difference between the amount of deuterium retained at P=10 Pa and at P=10⁴ Pa is only by about a factor of 2).

Anna V. Golubeva

IPP **NRA (Depth profiles)** Garhing

Much higher concentrations under surface can be achieved as compared with gas exposure

Anna V. Golubeva

Deuterium retention in damaged RUSFER

1. Damage:

- 20 MeV W⁶⁺ ions (0.94 dpa) modeling of neutrons damage IPP
- Plasma 5·10²¹ H/s·m², 10²⁵ H/m² LENTA Kurchatov institute
- · Heat load (10 pulses of 0.5 MJ/m², 0.5ms) QSPA TRINITI

2. Gas loading

Atlan (10⁴ Pa, 8 h, RT-600 K) – Kurchatov institute

3. Retention analysis

- NRA D(³He, p)α – IPP

Anna V. Golubeva

Deuterium retention in damaged RUSFER

Deuterium retention in RUSFER at plasma irradiation

Plasma-irradiation

Temperature Gas pressure (D₂) Plasma composition Accelerating potential: Plasma flux Plasma fluence

RT – 700 K 5.10-4 mbar D₃⁺ - 70%, D₂⁺ - 20%, D⁺ - 10% - 300 V 6×1019 at/s×m2 1023 ÷ 1025 D/m2

Plasma-irradiation

- Constant cleaning of surface layer
- Elevated concentrations in near-surface layer
- Defect arise in near-surface layer

Anna V. Golubeva

1,50E+

At exposure in D₂ gas At plasma irradiation (10⁴ Pa, 693 K) Rusfer 1 hour 10⁴Pa Rusfer 8 hours 10⁴Pa Eurofer 8 hours 10⁴Pa 300 K 10¹⁹ D/cm 1.00E+01 trapping sites create by plasma irradiation ! Y - Logarifmic scale Anna V. Golubeva

TDS (total retention)

Rusfer Damaged by QSPA-T heat loads

5, 10 or 50 pulses of 0.5 MJ/m² with a duration of 0.5 ms)

A. Spitsyn

Deuterium retention in damaged RUSFER

•The maximum D retention in all samples were observed after expose to D_2 at 500 K

•D mainly trapped in near-surface layer (~0.2 mkm)

•D concentrations of deuterium trapped in damaged samples are close to those in undamaged samples

Anna V. Golubeva

Deuterium permeation - V-4Cr-4Ti 600C - - V-4Cr-4Ti 465C 1E19 -△- V-4Cr-4Ti 330C Permeating flux, D₃·m⁻²·s⁻¹ - ChS-68 600C - ChS-68 465C - ChS-68 330C • 1E18 EK-181 600C 1E17 EK-181 465C EK-181 330C 1E16 Sample thickness: V-4Cr-4Ti - 0.1 mm 1E15 ChS-68 & RUSFER - 0.55 mm 1E14 0 1E13 P_{inlet}, Pa 10 100 0,1 Tritium leakages for DEMO & FNS [grams/year]: DEMO T=330C T=465C T=600C FNS T=330C T=465C T=600C S, m² d, mm p, Pa V-4Ti-4Cr 2431 V-4Ti-4Cr ChS-68 1226 44162 DEMO 1200 FNS 100 10 72 10 29 EK-181 EK-181 311 0.1

Anna V. Golubeva

Topics of research of hydrogen interaction with RAFMs in general

· Hydrogen isotopes permeation and retention in RAFMs

influence of neutron effects: high-dpa damage elements transmutation He and H formation helium bubbles formation

With use of both experimental and computation modeling of hydrogen isotopes interaction with materials

• Influence of neutron effects on mechanical properties and thermal conductivity of RAFMs.

Anna V. Golubeva

Our plans

 $\ensuremath{\cdot}$ Deuterium gas-driven permeation through RUSFER after high heat flux irradiation

• Influence of He production in material on hydrogen isotopes retention

Anna V. Golubeva

Thank you for your attention!