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Main objective of this study
To understand the effect of neutron and surrogate
irradiation upon microstructure of tungsten and

To understand the effect of the damage of tungsten on
hydrogen isotope retention through the observation of
change in the microstructure

In the last CRP held in Soul, I presented D retention in W
exposed to He plasma in addition to preliminary results of
D retention in W irradiated by heavy ions.



Experimental setup: Cu2+ Irradiation 
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Tandetron Accelerator (Kyushu Univ.)
Ion: Cu2+ 

Energy: 2.4 MeV
Flux: up to 5 x 1015 Cu2+/m2 s
Damage level: up to 4 dpa (max: > 100 dpa)
Sample Temp.: up to 873 K
Exposure area: 8 mmφ

 Estimated depth profile of displace-
ment damage in W.

 Calculation using the SRIM code with 
displacement energy of 55 eV.

 The peak damage region is ~400 nm.
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Experimental setup: Deuterium Irradiation

APSEDAS (PRC, Univ. of Tsukuba)
 Plasma is produced by RF (13.56 MHz) wave 

power (< 5kW, typical: 800 W steady state).
==> No electrode, No impurity such as carbon,

Clean environment
 Magnetic field: < 0.05 T
 Water cooled sample stage
 Plasma diameter: ~50 mm
 Exposure area: φ 8 mm (uniform exposure)

Water-cooled 
sample holder

φ 50

W sample

φ 8
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 Plasma exposures have been performed using a compact PWI simulator APSEDAS.



Examined Materials
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Base Materials: 
1mm-thick tungsten disc (99.99% pure, A.L.M.T. corp.)

• Annealed at ~ 2000 oC for 1 h (Re-crystallized)
• The surface was mechanically polished to a mirror finish.

The grain size is in the range of 10 µm to ~100 µm.

100 µm 10 µm



Damage evolution by 2.4 MeV Cu2+ irradiation
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 Nano-voids (d<1nm) are observed in 1 dpa case and they formed densely.

 Most of interstitial loops (IL) is considered to be nucleated by cascade collisions,
since the density of ILs was two order of magnitude higher than the estimated value
using a rate theory assuming that the two free interstitials act as nuclei for ILs..

 Each IL can not grow larger individually but additional loops were formed in the
vicinity of pre-existing dislocation loops and dislocations and aligned to coalesce
with each other.

1.0 dpa 1.0 dpa

Irradiation at 
room temp.



Experimental Procedure
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1mm-thick tungsten discs (99.99% pure, A.L.M.T. corp.)

Annealed at ~2000 oC for 1 h (Re-crystallized)

D plasma irradiation

2.4 MeV Cu2+ irradiation

TDS measurement

Electron density (m-3) 2.7 x 1017

Electron temp. (eV) 10

Space potential (V) 30

Flux (m-2 s-1) 3.7 x 1021

Fluence (m-2)  2.0 x 1025

Surface temp. (K) 480

(1) dpa dependence: 0.01 ~ 4 dpa

(2) flux dependence: 1 ~ 5 x 1015 Cu2+/m2 s

(3) sample temperature: RT, 500 K, 873 K



Damage level dependence of TDS Spectrum
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 There is three main peaks in the
spectra: ~620 K, ~760 K and ~860K.

 Temperatures at 1st and 2nd peaks are
the same as those of non-irradiated W.

 The 3rd peak newly appears due to 2.4
MeV Cu2+ irradiation and is considered
to be caused by vacancy clusters and
voids.

 Retention in the damaged W increases
with the damage level but it saturates
around 0.4 dpa, suggesting that newly
introduced defects may be cancelled by
already existing vacancies and voids
with high density.
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Flux dependence of TDS Spectrum

M. Sakamoto et al.                                      2nd RCM of CRP on Irradiated Tungsten, SNU, Korea 8 Sep. 2015 10

 Comparison between high and low fluxes
of Cu2+ ions indicates that D retention in
W irradiated with low flux Cu2+ ions
becomes 3.5 times lower than that for
high flux irradiation.

 The desorption spectrum of the low flux
irradiation also consists of three stages of
desorption.

 The temperatures at the three peaks for
the low flux case became lower than
those of the high flux irradiation.
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Comparison of dpa dependence between high and low 
irradiation fluxes
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 In the case of high flux irradiation, D retention increases with the damage level but
it saturates around 0.4 dpa.

 This suggests that newly introduced defects are cancelled by already existing
vacancies and voids with high density.

 In the case of low flux irradiation, D retention increases with the damage level up to
2 dpa and no saturation is observed.

 It is found that defect formation due to heavy ion irradiation depends on not only a
damage level but also flux of the high energy ions.



Simulation of TDS spectra using an HIDT code

M. Sakamoto et al.                                      2nd RCM of CRP on Irradiated Tungsten, SNU, Korea 8 Sep. 2015 12

0

1

2

3

4

300 400 500 600 700 800 900 1000

D
es

or
pt

io
n 

ra
te

 (1
018

D
/m

2 s)

Temperature (K)

 The HIDT (Hydrogen Isotope Diffusion and Trapping) 
code has been developed in Shizuoka Univ. 

(ref: Y. Oya et al., JNM 461 (2015) 336.)
 Input parameters:

D = 2.9 x 10-7 m2/s (Frauenfelder)
Kr = 3.0 x 10-25 m4/s (Pick)

 Time evolution of sample temperature and D ion flux 
for the simulation was the same as those of the 
experiments.

 A depth profile of defect concentration is similar figure 
to the dpa profile calculated by the SRIM code.
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Simulation of TDS spectra using an HIDT code
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Simulation of TDS spectra using an HIDT code
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Corresponding defects

1st 0.83 eV dislocation loops & grain boundary

2nd 1.22 eV vacancy

3rd 1.46 eV vacancy cluster & void



Simulation of TDS spectra using an HIDT code
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D retention in the 2nd stage (i.e. vacancy) 
significantly decreased with decrease in ion 
flux (i.e. dpa rate), while D retention in 3rd

stage decreased not so much.

Vacancy

Dislocation Viod

High dpa rate: vacancies may be remained.
Low dpa rate: voids may be produced.

Speculation



Dependence of D retention on sample temperature 
druing Cu2+ ion irradiation
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 Cu2+ irradiation was carried out at the sample
temperature of RT, 500 K and 873 K.

 Desorption rate decreased as a whole with the
sample temperature during the irradiation.

 For the sample temperature of 500K, 873 K, D
retention decreased by 60 % and 80 %,
respectively.
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Two possible candidates
1. Interstitial and vacancy may annihilate each

other with increase in the sample temperature.

2. At the sample temperature of 873 K,
Interstitials may escape to grain boundary and
remained vacancies coalesce to become void.

Question
Which is dominant for D retention, large number 
of vacancies or smaller number but bigger voids?



Summary
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Deuterium retention in tungsten (W) samples irradiated by 2.4 MeVCu2+ ions has
been investigated to study effects of the damage on hydrogen isotope retention in W.

 Most of the dislocation loops (ILs) were nucleated by cascade collisions.
 Additional loops were formed in the vicinity of pre-existing dislocation loops

and dislocations and aligned to coalesce with each other.
 Nano-voids (d<1nm) are observed in 1 dpa case and they formed densely.

TEM observation

 There exists three desorption peaks in the TDS spectra . The desorption
peak around 850 K newly appeared due to Cu2+ ions irradiation. This peak
must be related to voids.

Flux and damage level dependences

TDS spectra

 When the Cu2+ ion flux decreased by 5 times, the D retention decreased by
3.5 times, indicating clear flux dependence.

 In the case of higher ion flux, D retention increases with the damage level
but it saturates around 0.4 dpa, suggesting that newly introduced defects
may be cancelled by already existing vacancies and voids with high density.



Summary (continued)
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 On the other hand, In the case of low flux irradiation, D retention increases
with the damage level up to 2 dpa and no saturation is observed.

Flux and damage level dependences

Sample temperature dependence
 Desorption rate decreased as a whole with the sample temperature during

the irradiation.

Simulation using the HIDT code

 TDS spectrum was reproduced by using the HIDT code using experimental
data. The binding energies of three desorption peaks are 0.83 eV, 1.22 eV
and 1.46 eV.

It is necessary to know effects of the number of defects and their size on D retention. 
It is planed to measure TEM using samples which have irradiated at different sample 
temperature.

High dpa rate: vacancies may be remained.
Low dpa rate: voids may be produced.

Speculation
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