Modeling of tritium trapping effects of vacancy, grain boundaries and vacancy clusters

Takuji Oda, Hyung Jin Shim, Gon-Ho Kim Seoul National University

Objectives presented in the 1st CRP meeting (Nov. 2013)

"Evaluation of tritium inventory in irradiated W by atomic-scale modeling"
T. Oda, H-J. Shim, G-H. Kim Oda; Seoul National University

Our research objectives are

- (i) to establish a computational methodology to simulate the tritium behavior in irradiated tungsten which contains radiation defects, then
- to acquire estimates of the tritium inventory in plasma-facing tungsten under some proposed fusion reactor conditions. (>> we gave up this)

To achieve this overall goal, we work on 3 subjects:

- (1) to construct a high-quality potential model for W-H system to simulate behaviors of tritium and defects in W
- (2) to establish kinetic models relevant with tritium behaviors in damaged W
- (3) to develop a code to simulate tritium behaviors in damaged W

Key fundamental processes for T behavior in damaged W

T behavior: *solution (S), diffusion (D), permeation (P), and release.* To predict it, we need to construct models for fundamental processes.

1. Effects of grain boundaries (GBs) on H behavior in W

2. Effects of vacancy clustering on H behavior in W

3. Development of a code to simulate tritium behavior in damaged W

1. Effects of GBs on H behavior in W: difference from effects of V

(eV)	E ads-surf	E _{sol-lat}	E _{dif-lat}	E _{bind-V}	E _{bind-GB}	E _{dif-GB}
W	0.7-0.9 ^{*1}	1.1	0.25 ^{*2}	1.2 ^{*3}	?	?

*¹K. Heinola et al., Phys. Rev. B 81 (2010) 073409; *² K. Heinola et al., J. Appl. Phys. 107 (2010) 11531; *³ K. Ohsawa et al., Phys. Rev. B 82 (2010) 184117.

1. Effects of GBs on H behavior in W -thermodynamic model for GBs-

$$A(x) = (xN_{H})E_{H-GB}(x) - Tk_{B}\ln S_{config}(x)$$

where N_H is the number of H atoms in the system and x is the fraction of H atoms trapped by GB.

x of equilibrium state is given by $\partial A / \partial x = 0$

$$S_{config}(x) = k_B \ln \left(W_{H-lattice} \times W_{H-GB} \right)$$
$$W_{H-lattice} =_{N_{lattice-site}} C_{N_{H @ lattice}} =_{N_{lattice-site}} C_{(1-x)N_{H}}$$
$$W_{H-GB} =_{N_{GB-site}} C_{N_{H @ lattice}} =_{N_{GB-site}} C_{xN_{H}}$$

(Assumption-1) A specimen is composed of single-size cubic grains.

$$N_{H@lattice-site} = 12N_{unit-cell} = 12(l_{grain}/l_{lat})^{3}$$
$$N_{H@lattice-site} = \frac{6\beta}{2}(l_{grain}/l_{lat})^{2}$$

where eta is the number of GB sites per unit GB plane

1. Effects of GBs on H behavior in W -thermodynamic model for GBs-

(Assum.-2) Lattice sites are sparsely occupied by H atoms.

(Assum.-3) GB sites are sparsely occupied by H atoms.

(Assum.-4) $E_{bind-GB}$ and E_{dif-GB} are independent of the number of H trapped at GB, and we can define effective values of them, which are independent of x and T. (Assum.-5) Pre-exponential factors for GB diffusion and bulk diffusion are the same.

$$D_{H-GB}[m^2 s^{-1}] = 1.58 \times 10^{-7} \times \exp\left(-E_{dif-GB}/k_BT\right)$$

$$D_{eff} = \begin{cases} 1 + \frac{3\beta l_{lat} \left(\left(D_{H-GB} / D_{H-lat} \right) - 1 \right)}{3\beta l_{lat} + 12l_{grain} \exp \left(-E_{bind-GB} / kT \right)} \end{cases} \times D_{H-lat} \\ S_{eff} = \begin{cases} 1 + \frac{3\beta l_{lat}}{12l_{grain} \exp \left(-E_{bind-GB} / kT \right)} \end{cases} \times S_{H-lat} \\ P_{eff} = D_{eff} S_{eff} = \begin{cases} 1 + \frac{3\beta l_{lat} \left(D_{H-GB} / D_{H-lat} \right)}{12l_{grain} \exp \left(-E_{bind-GB} / kT \right)} \end{cases} \times S_{H-lat} \\ P_{H-lat} \end{cases}$$

$$P_{eff} = D_{eff} S_{eff} = \begin{cases} 1 + \frac{3\beta l_{lat} \left(D_{H-GB} / D_{H-lat} \right)}{12l_{grain} \exp \left(-E_{bind-GB} / kT \right)} \end{cases} \times P_{H-lat} \end{cases}$$

$$P_{eff} = D_{eff} S_{eff} = \begin{cases} 1 + \frac{3\beta l_{lat} \left(D_{H-GB} / D_{H-lat} \right)}{12l_{grain} \exp \left(-E_{bind-GB} / kT \right)} \end{cases} \times P_{H-lat} \end{cases}$$

1. Effects of GBs on H behavior in W -estimation of some parameters in the model-

(1) β and $E_{bind-GB}$ \checkmark [$\Sigma 5$ tilt GB] \checkmark [$\Sigma 3$ tilt GB] \checkmark [W(110)/W(112)] $\beta = 2; E_{bind-GB} = 1.1 \text{ eV} (1^{\text{st}} \text{ atom}), 1.0 \text{ eV} (2^{\text{nd}})$ $\beta = 6; E_{bind-GB} = 1.2 \text{ eV}, 1.0 \text{ eV}, 0.8 \text{ eV}, 0.3 \text{ eV}$ $\leftarrow [W(110)/W(112)]$ $E_{bind-GB} = \sim 1.0 \text{ eV}$

(2) *E*_{dif-GB}

 \checkmark [Σ5 tilt GB] [W(110)/W(112)] E_{dif-GB} <0.2 eV for some paths

*[Σ5 tilt GB] H.B. Zhou et al., Nucl. Fusion 50 (2010) 025016.

*[Σ3 tilt GB] W. Xiao, W.T. Geng, J. Nucl. Mater. 430 (2012) 132.

*[W(110)/W(112)] C. González et al., Nucl. Fusion 55 (2015) 113009.

Parameter	Definition	Value	Uncertainty
β	Number of grain boundary sites for H in unit GB plane	2	High
$E_{bind-GB}$	H binding energy at gb	1.0 eV	~30%
E _{dif-GB}	H diffusion barrier in and along GB	0.4 eV	High

1. Effects of GBs on H behavior in W -results: effects on H diffusivity-

*The system is equilibrated with 1x10⁵ Pa of H₂ gas.

✓ In practice, it is technically difficult to determine D_{H-lat} at T< 800 K.

1. Effects of GBs on H behavior in W -results: sensitivity of diffusivity to E_{dif-GB} -

 \checkmark E_{dif-GB} = 0.4 eV is reasonable in comparison with experimental results.

1. Effects of GBs on H behavior in W -results: effects on H solubility-

✓ GBs significantly increase T inventory, especially in small-grain materials.

1. Effects of GBs on H behavior in W -results: effects on H permeability-

✓ The deviation seen in experimental data at low temperatures (<1000 K) can be attributed to GB effects.</p>

✓ Small-grain materials may increase T leakage.

1. Effects of GBs on H behavior in W -why GBs change the permeability?-

(i) Defect trapped by which H can still migrate, e.g. grain boundary (GB).

$$S_{eff} = S_{H@\,lat} + S_{H@\,GB} = S_{H@\,lat} / \alpha \qquad \alpha = S_{H@\,lat} / (S_{H@\,lat} + S_{H@\,GB})$$
$$D_{eff} = \alpha D_{H@\,lat} + (1 - \alpha) D_{H@\,GB}$$
$$P_{eff} = D_{eff} S_{eff} = \left\{ D_{H@\,lat} + ((1 - \alpha) / \alpha) D_{H@\,GB} \right\} S_{H@\,lat}$$

(ii) Defect trapped by which H cannot migrate, e.g. vacancy.

$$S_{eff} = S_{H@\,lat} + S_{H@\,vac} = S_{H@\,lat} / \alpha$$

$$D_{eff} = \alpha D_{H@\,lat} + (1 - \alpha) D_{H@\,vac} \sim \alpha D_{H@\,lat}$$

This is the diffusivity of V-H complex, which is negligibly small.

$$P_{eff} = D_{eff} S_{eff} \sim (\alpha D_{H@\,lat}) (S_{H@\,lat} / \alpha) = D_{H@\,lat} S_{H@\,lat} = P_{true}$$

$$\alpha = S_{H@\,lat} / (S_{H@\,lat} + S_{H@\,vac}) \sim D_{eff} / D_{H@\,lat}$$

*T. Oda, Fusion Eng. Des. **112** (2016) 102.

1. Effects of GBs on H behavior in W -synergetic effect of GB and vacancy on H diffusivity-

1. Effects of GBs on H behavior in W -synergetic effect of GB and vacancy on *D*-

✓ GB effects were (unintentionally) considered in many previous studies by using $E_{dif-lat}$ = 0.39 eV.

1. Effects of grain boundaries (GBs) on H behavior in W

2. Effects of vacancy clustering on H behavior in W
2.1. Model construction for V clusters in bcc-Fe
2.2. Potential model development for W-H systems
2.3. Effects of vacancy clustering in bcc-W

3. Development of a code to simulate tritium behavior in damaged W

2.1. Model construction for V clusters in bcc-Fe -effects of vacancy clustering on H diffusivity by MD-

MD simulation was performed by using LAMMPS code with Fe-H potential model reported by Ramasubramaniam et al. [Phys. Rev. B 79 (2009) 174101].

2.1. Model construction for V clusters in bcc-Fe -estimation of the number of trapping sites-

✓ Inner vacancies in a cluster (void) cannot trap H atoms.

 The surface area of void should be proportional to the number of H-trapping site.

2.1. Model construction for V clusters in bcc-Fe -validation of the model in comparison with MD results-

✓ As the size of void increases, its effect on S_{eff} and D_{eff} are decreased.
 ✓ However, H₂ formation is not considered in this model !!

2.2. Potential model development for W-H systems -motivation-

✓ There are two widely-utilized potential models for tungsten-tritium system: both are Tersoff-Brenner type Bond-order potential (BOP):

✓ by Juslin in 2005 [N. Juslin et al., J. Appl. Phys. 98 (2005) 123520]

✓ by Li in 2011 [X.-C. Li et al., J. Nucl. Mater. 408 (2011) 12].

$$E = \sum_{i>j} f_{ij}^{c}(r_{ij}) \left[V_{ij}^{R}(r_{ij}) - \frac{b_{ij} + b_{ji}}{2} V_{ij}^{A}(r_{ij}) \right] \qquad b_{ij} = (1 + \chi_{ij})^{-1/2}$$

$$\chi_{ij} = \sum_{k(\neq i,j)} f_{ik}^{c}(r_{ik}) g_{ik}(\theta_{ijk}) \omega_{ijk} \exp[\alpha_{ijk}(r_{ij} - r_{ik})] \qquad g(\theta) = \gamma \left(1 + \frac{c^{2}}{d^{2}} - \frac{c^{2}}{d^{2} + (h + \cos \theta)^{2}}\right)$$

 ✓ Regarding hydrogen-vacancy interaction energy, large errors are brought in both models: underestimation in BOP-1 and overestimation in BOP-2.

Trapping energy	V_1H_1	$V_1 H_2$	Solution
(eV per H)			energy
BOP-Juslin	0.59	0.59	0.85
BOP-Lee	2.03	2.03	1.03
DFT	1.2	1.2	1.1

2.2. Potential model development for W-H systems -how to make potential models?-

We investigated two type of models.

- ✓ (1) Gaussian Approximate Potential (GAP)
 - In this model, we do not define potential functions explicitly; instead, we define a statistical model to relate similarities in atomic environments with the potential energy. [A.P. Bartok et al., Phys. Rev. Lett. **104** (2010) 136403; W. Szlachta et al., Phys. Rev. B **90** (2014) 104108]
- \checkmark (2) EAM potential, with a systematic parameterization method

2.2. Potential model development for W-H systems -method to construct EAM potential model-

Embedded atom model (EAM): incl. a term depending on electron density

$$E_{EAM} = E_{2B} + \sum_{i}^{atoms} f_{EAM,i} \left(\rho_i \left(\dots, r_{ij}, \dots \right) \right), \qquad \rho_i = \sum_{j}^{r_{ij} < r_{cut}} g\left(r_{ij} \right)$$
Electron density
For example, $f_{EAM,i} \left(\rho_i \right) = \sqrt{\rho_i}$
 $\rho_i = \sum_{j}^{r_{ij} < r_{cut}} \left(r_{ij} - r_{cut} \right)^3$

<How to establish an EAM potential model>

- (1) Prepare a training set, which is DFT calculation results on energies, forces and stresses.
- (2) Expand f_{EAM} function with Fourier cosine series (around 50 terms), with fixing ρ functions.
- (3) Perform MD simulations to find configurations that wrongly give lower potential energies.
- (4) Conduct DFT calculations with the configurations, and update the training set.

2.2. Potential model development for W-H systems -DFT calculation results for 'training' potential model-

System	Number of	Number of	Temperature (K)	Number of
	W atoms	H atoms		configurations
Perfect crystal	128	0	300, 900, 1500,	8,000 (800 for each
			2100,, 5700	temperature)
Interstitial	129	0	300, 900,, 4500	2,400
Vacancy	127	0	300, 900,, 4500	3,200
Vacancies (V2)	126	0	300, 900,, 4500	6,400
Vacancies (V3)	125	0	300, 900,, 4500	9,200
Vacancies (V5)	123	0	300, 900,, 4500	6,400
Vacancies (V9)	119	0	300, 900,, 4500	3,200
Surfaces	12	0	(static calculation)	3,200
Deformation of bcc-W crystals	2	0	(static calculation)	100
W2 molecule	2	0	(static calculation)	100
WH molecule	1	1	(static calculation)	50
H2 molecule	0	2	(static calculation)	50
H in perfect crystal	128	1/2/6/12	300, 900, 1500, 2100	5,600
H in defective crystal: interstitial	129	1/2/6/12	300, 900, 1500, 2100	4,400

2.2. Potential model development for W-H systems -DFT calculation results for 'training' potential model-

System	Number of	Number of	Temperature (K)	Number of
	W atoms	H atoms		configurations
H in defective crystal: V1	127	1/2/6/12	300, 900, 1500, 2100	5,600
H in defective crystal: V2	126	1/2/6/12	300, 900, 1500, 2100	10,400
H in defective crystal: V3	125	2/6	300, 900, 1500, 2100	3,200
H in defective crystal: V5	123	2/6	300, 900, 1500, 2100	1,600
H in defective crystal: V9	119	2/6/12	300, 900, 1500, 2100	2,000

(a) V9 (W119) @ 300 K

(b) V9 (W119) @ 4500 K

(c) V9-H12 (W119H12) @ 300 K

2.2. Potential model development for W-H systems -shape of constructed EAM potential model-

2.2. Potential model development for W-H systems -Comparison of model performance-

surface-energy	Exp.	QM	BOP- <u>Juslin</u>	BOP-Lee	EAM-Wang	EAM-this
W(100), eV/A2	0.187	0.252	0.090	0.197	0.186	0.200
W(110), eV/A2	0.201	0.205	0.058	0.145	0.159	0.176
defect-energy						
V1 (eV)	3.7	3.27	1.69	3.54	3.60	3.19
V migration (eV)	1.8	1.72	1.77	1.81	1.36	1.49
SIA<100> (eV)	-	12.24	9.29	12.34	10.82	10.02
SIA <111> (eV)	9.06	10.20	10.00	9.55	10.11	10.01
lattice-constant(A)	3.165	3.172	3.165	3.165	3.165	3.172
elastic const. (C11, GPa)	501-521	548	542	515	522	528

2.2. Potential model development for W-H systems -validation in W-H interaction-

	Exp.	DFT	BOP-Juslin	BOP-Lee	EAM-this
H solution energy	1.1	0.97	0.85	1.03	-1.35
[Tri-site] - [T-site]	0.25	0.205	0.2	0.2	0.215
[O-site] - [T-site]		0.39	0.2	0.32	0.430
V1H1 interaction energy		-1.24	-0.59	-2.00	-1.12

2.3. Effects of vacancy clustering in bcc-W

1. Effects of grain boundaries (GBs) on H behavior in W

2. Effects of vacancy clustering on H behavior in W

3. Development of a code to simulate tritium behavior in damaged W

3. Development of a code to simulate tritium behavior in damaged W -kinetic models to be implemented in the code-

We have recently started to develop a rate-theoretical model to simulate T behaviors in damaged W based on constructed/reported models.

Region	Process	Quality	Method
Surface	Implantation	Δ	Experiment
	Desorption	Δ	experiment
Bulk	Diffusion	0	QM, KMC
	V	0	QM, KMC
	V-cluster effect	0	MD
	Grain boundary effect	0	QM, Thermodynamic model
	dislocations	Δ	QM/MD, Extension of GB effect model
	Radiation defect formation	0	MD
	Defect evolution	-	

3. Development of a code to simulate tritium behavior in damaged W -a benchmark test and application-

- ✓ Experimental data were obtained with single crystals by collaboration with Univ. Tokyo (2.8 MeV W irradiation), and Shizuoka University (TDS experiment).
- ✓ Deuterium ion was implanted by 1keV D_2^+ irradiation with a flux of 1×10¹⁸ D/m²/s up to 1×10²² D/m² at room temperature.
- ✓ Parameters for simulations in our code are defect types (vacancy, what kind of vacancy clusters, etc) and concentrations.

1. Effects of grain boundaries (GBs) on H behavior in W

- $\checkmark E_{bind-GB} = 1.0 \text{ eV}; E_{dif-GB} = 0.40 \text{ eV}$
- ✓ GB effects were (unintentionally) considered in many previous studies by using $E_{dif-lat}$ = 0.39 eV.

2. Effects of vacancy clustering on H behavior in W

- ✓ As the cluster size increases, the trapping capacity decreases in proportional to $n^{2/3}$
- ✓ As the cluster size increases, the maximum trapping energy increases and then soon saturate to be around that for H on surface (1.9-2.0 eV).

3. Development of a code to simulate tritium behavior in damaged W

✓ We have started the development. It would be very nice if there are a set of benchmark tests to validate the code....

Summary and future works

(1) Surface processes

- ✓ Reflection coefficient (e.g. blocking effect)
- Desorption kinetics
- ✓ Adsorption/absorption kinetics

(2) Formation of H₂ gas inside vacancy clusters

