

Deuterium retention in tungsten damaged by mechanical work, electrons, and fast ions

M. Zibrov^{a,b}, B. Wielunska^a, T. Schwarz-Selinger^a, A. Bakaeva^{b,c}, M. Balden^a, F. Borgognoni^d,

A. Dubinko^{b,c}, W. Egger^e, J. Heikinheimo^f, A. Manhard^a, <u>M. Mayer^a</u>, J. Räisänen^g, D. Terentyev^c,

F. Tuomisto^f, M. Wirtz^h

^aMax-Planck-Institut für Plasmaphysik, 85748 Garching, Germany ^bDepartment of Applied Physics, Ghent University, 9000 Gent, Belgium ^cInstitute for Nuclear Material Sciences, SCK•CEN, 2400 Mol, Belgium ^dENEA, 00044 Frascati (RM), Italy ^eUniversität der Bundeswehr München, 85577 Neubiberg, Germany ^fDepartment of Applied Physics, Aalto University, 00076 Aalto, Finland ^gDepartment of Physics, University of Helsinki, 00014 Helsinki, Finland ^hForschungszentrum Jülich GmbH, 52425 Jülich, Germany

ERASMUS MUNDUS

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Tritium Inventory in ITER

- ITER will investigate a burning deuteriumtritium plasma
 - \Rightarrow **Problem**: Radioactivity of tritium (T)
 - T-inventory in ITER is restricted to
 - 700 g due to safety reasons
 - \blacktriangleright T is a precious resource \Rightarrow should not
 - be "stored" in the wall
- ITER will use Be and W

as plasma-facing materials

• W is a candidate material for DEMO

\Rightarrow Need to understand T retention

mechanisms in W

Predicted edge plasma conditions:

Wall: 800 m², ~10²¹ /m²s

surface temperature: ~450 K

• Divertor: <10 m², ~10²⁴ /m²s

surface temperature: ~1000 K

Tritium retention in tungsten

H solubility in W is extremely low ⇒ presence of lattice defects determines H isotope retention in W

- Intrinsic defects:
 Dislocations, impurities, grain boundaries, voids
- Ion- and neutron-induced defects: Vacancies, vacancy clusters, dislocation loops,...

Features of H trapping by each type of defect are still unclear!

\Rightarrow Dedicated experiments studying H interaction with different types of defects in W are required

Intrinsic defect density in W

- As received: 10⁻⁴ 10⁻³ M. Balden et al. JNM 452 (2014) 248
- Recrystallized: 2x10⁻⁵ 10⁻⁴ M. Balden et al. JNM 452 (2014) 248
- Single crystal: <5x10⁻⁶
- Depending on material grade and pre-treatment
- Scatter from sample to sample even from the same batch
- ⇒ Experiments at low dpa levels require recrystallized W samples or single crystals!

Defect decoration by gentle plasma loading

Deuterium decoration of defects:

- Low-temperature ECR plasma:
 - Energy: "<5eV/D" (floating targets)
 - Ion flux: 5.6 ×10¹⁹ D/(m²s)

(97% as D3+, 2% as D2+, 1% as D+)

- Homogenous plasma: Five samples at once
- ➤ "Gentle" loading:
 - No additional defect creation
 - No blistering

A. Manhard et al., Plasma Sources Sci. Technol. 20 (2011) 015010

Dislocation-dominated samples

Idea: Introduce dislocations by tensile deformation at temperatures above the ductile-to-brittle transition temperature (DBTT)

- Tensile specimens of hot-rolled W with 99.97 wt.% purity
- Recrystallized at 1873 K for 1 hour in vacuum
- Tensile deformations at temperatures of 573 K and 873 K to strains from 3% to 39%
- Samples (10×10 mm²) were cut from the gage section

Dislocation-dominated samples: microstructure

IPP

2017-06 IAEA CRP Damaged W M. Mayer et al.

Dislocation-dominated samples: defect density

- Positron annihilation Doppler broadening spectroscopy (DBS) shows almost linear correlation of W vs. S with the amount of plastic deformation
 ⇒ the nature of positron-trapping defects does not change with increasing deformation
 - \Rightarrow higher deformation levels lead to higher concentration of positron-trapping

defects

Increasing deformation level leads to increase in number density of blister-like structures

Increasing deformation level leads to increase in D concentration

DI

- Increasing deformation level leads to increase in D concentration
- TDS spectra have a complicated multi-peak structure
- D depth profiles and TDS spectra seem to be affected by the presence of blisters

ΠD

- Plasma exposure at 450 K does not lead to formation of blisters
- TDS spectra have high-temperature peaks, amplitudes increase with increasing deformation level
- \Rightarrow presence of trapping sites with high H binding energies (similar to vacancies and vacancy clusters)
- \Rightarrow Formation during deformation or during plasma exposure (e.g. nucleation of bubbles on dislocations)?

 Simplest radiation defects - Frenkel pairs

- Simplest radiation defects Frenkel pairs
- Can be created by irradiation with electrons and light ions (p)

- Simplest radiation defects Frenkel pairs
- Can be created by irradiation with electrons and light ions (p)

✓ Low damage levels

- Simplest radiation defects Frenkel pairs
- Can be created by irradiation with electrons and light ions (p)
 - ✓ Low damage levels
 ✓ Low irradiation temperatures (< 550 K for W) → avoid vacancy mobility [1,2]

[1] H. Eleveld, A. van Veen, J. Nucl. Mater. 212 (1994) 1421.[2] A. Debelle, M.F. Barthe, T. Sauvage, J. Nucl. Mater. 376 (2008) 216

- Simplest radiation defects Frenkel pairs
- Can be created by irradiation with electrons and light ions (p)
 - ✓ Low damage levels
 ✓ Low irradiation temperatures (< 550 K for W) → avoid vacancy mobility [1,2]
- ⇒ Avoid formation of secondary
 defects (vacancy clusters, pores,..),
 which is typical at high damage
 levels
- H. Eleveld, A. van Veen, J. Nucl. Mater. 212 (1994) 1421.
 A. Debelle, M.F. Barthe, T. Sauvage, J. Nucl. Mater. 376 (2008) 216

Vacancy-dominated samples

Idea: Introduce mainly single vacancies by damaging with protons or electrons

- Samples: High-purity W (100) single crystals
- Damaged by 200 keV protons and 4.5 MeV electrons to low damage levels (below 10⁻³ dpa_{KP}) at 295 K
- Post-irradiation annealing of samples in vacuum for 15 min at temperatures in the range of 550-1800 K
 → study the annealing and clustering behavior of single vacancies

Depth (µm)

19

Damage calculated using the Monte-Carlo ElectronDamage code L. Messina, Master Thesis; Politecnico di Torino, Kungliga Tekniska Högskolan, 2010

2017-06 IAEA CRP Damaged W M. Mayer et al.

Vacancy-dominated samples: Annealing of vacancies

- Post-irradiation annealing at T > 600 K leads to sharp increase of S-parameter ⇒ vacancies become mobile and start to agglomerate in clusters
- Same S-parameter after annealing between 800 K \leq T \leq 1200 K \Rightarrow stable configuration of vacancy clusters
- Reduction of S-parameter after annealing at $T \ge 1300 \text{ K} \Rightarrow$ partial annealing of vacancy clusters
- Complete recovery of the defects after annealing at 1800 K

H interaction with vacancies and vacancy clusters in W

- Use of W single crystals (extremely low amount of intrinsic defects)
- No D is detectable in nondamaged single crystals
 - \Rightarrow Minimal defect creation by plasma exposure
- Depth distributions of damage is in agreement with SRIM
- A good system for studying H interaction with vacancies/vacancy clusters

MeV electron-irradiated samples: D retention

- D concentration in undamaged sample ~5×10⁻⁶ at.fr.
- Increase of D bulk concentration with dpa level
- The peak position on TDS spectra is located at unexpectedly high temperatures (900 K) and broadens with increasing fluence

MeV electron-irradiated samples: D retention

- D concentration in undamaged sample ~5×10⁻⁶ at.fr.
- Increase of D bulk concentration with dpa level
- The peak position on TDS spectra is located at unexpectedly high temperatures (900 K) and broadens with increasing fluence
- Strong influence of heavy water (HDO, D₂O) due to low amounts of trapped D

Neutrons: narrow recoil energy spectra lons: Different weighted PKA spectra 1.0 broad recoil energy spectra Copper 0.8 protons 0.6 Ne M(T)Kr 0.4 Heavier ions are closer to neutrons neutrons 0.2 than light ions 0 10^{2} 10^{4} 10^{3} 10^{5} 10^{6} 10^{7} 10 T(eV)

Weighted recoil spectra W(T) vers recoil energy T for 1 MeV particles in copper from Gary S.Was: "Fundamentals of Radiation Materials Science"

Damaging by different ion species (2)

IPP

- 3 MV IPP tandem beam line "TOF"
- Quadrupole triplet for beam focusing
- x- and y- deflection plates for beam scanning/spreading
- Faraday corner cups for flux measurement
- Tungsten was damaged with different ion species (D, He, Si, Fe, Cu, W) at energies between 0.3 and 20 MeV to 0.04 dpa_{KP} and 0.5 dpa_{KP} in the damage peak maximum
- Energies were chosen to get similar damage
- range < 2µm

Damaging by different ion species: D depth profiles

Small dpa level (0.04 dpa)

- Comparable D concentrations for all heavy ions
- Somewhat smaller D concentrations for light ions

High dpa level (0.5 dpa)

- Identical for all heavy ions
- Somewhat different behaviour for He

Damaging by different ion species: TDS

Small dpa level (0.04 dpa)

- Comparable TDS spectra for all heavy ions
- Systematic mass dependence for lighter ions

High dpa level (0.5 dpa)

- Identical for all heavy ions
- Different behaviour for He

0.23 dpa level

No damage rate dependence

Lack of reliable data on H interaction with different types of defects in W **Samples with defined specific defects for fundamental understanding**

- Dislocations by mechanical work at elevated temperatures
 - Dislocations have only small influence on D retention at 450 K
 - Mechanical damage faciliates formation of blisters
- Single vacancies by MeV electron beam or 200 keV proton irradiation
 - Vacancy clusters > 600 K; Complete defect annealing > 1700 K
 - Heavy water at low dpa levels

Samples damaged by different MeV ions

- Comparable results for all heavy ions (especially at high dpa)
- No damage rate dependence