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environment.

»  Summary

--Self-healing prospect for radiation damage in nano-crystal W.



Background: radiation effects in NCs

N

> The defect accumulation rate:
NC Au >PC Au at 15K,
NC Au<<PC Au at 300K.

> NC Au recovers more quickly than PC Au.
Y. Chimi et al. J. Nucl. Mater. 297, 355 (2001)

> The effect of the grain size on the density of defects:

there exists a defect-free zone.

Zr0O2: 15nm, Pd: 30nm.T=300K
M. Rose et al. Nucl. Instr. Meth. B 127, 119 (1997)

Nano-crystals often exhibit radiation tolerance, which
depends on temperature, grain size and radiation dose.




Background: self-healing mechanisms in NCs

.

¢ Complex self-healing mechanisms
1. Interstitial emission: hm Bl gmamE ol e aand
>Upon irradiation, interstitials are [@iiiié ¢ Ly g
loaded into the boundary, which then |:7:::2:¥is:: . oo
acts as a source, emitting interstitials —/—— —— ——
to annihilate vacancies in the bulk. | 8™ |[F] el gmem
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»This unexpected recombination ., i .
mechanism has a much lower energy | Ea-0.21 eV .
barrier than conventional vacancy [T malliT T seat
diffusion and is efficient for || Al " |
annihilating immobile vacancies iIn § "1
the nearby bulk, resulting in self- [Eateev |4 | |
healing of the radiation-induced “@ "x& ° Ty ° Ty g °
damage. X.-M. Bai et al, Science,

327 (2010) 1631




Background: self-healing mechanisms in NCs

2. GB motion

Coupled GB motion, in some cases enhanced by interstitial loading,
can lead to a radiation-damage healing mechanism, in which a large
stress activates coupled GB motion, and the GB sweeps up the
defects, such as voids and vacancies, as It passes through the
material.
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Background: self-healing mechanisms in NCs

3. GB phase transition

Owing to the presence of multiple metastable phases, grain boundaries
can absorb significant amounts of point defects created inside the
material by processes such as irradiation.

T. Froloy, et al. Nat. Commun. 4 (2013) 1899. °




Background: self-healing mechanisms in NCs

4. Coupled interstitial motion
along the GB and vacancy
segregation ntrior 2
»The self-healing capability of nano-

crystalline iron Is closely related to the s ‘o v JV
coupling of the individual fundamental 1

N
a3 M

%
N

a
Activation

segregation and annihilation processes of
vacancies and interstitials near the GB.

» Although the interstitial is tightly bound
to the GB after segregation, it efficiently
removes the vacancies near the GB while
moving along the GB, with the low-barrier

region extending into the neighborhood of

the GB and even into the grain interior. X. Li, et al. Acta Materialia
109 (2016) 115-127



In irradiated nano-crystals

Actually, there are a large number of competitive processes involved
In damage evolution, including diffusion, segregation, annihilation,
clustering, emission of the interstitial (SIA), vacancy (V) and their
clusters.

E},:

Binding
energy
Eeet
Segregation
energy;
E;:
Grain Activation
1 - energy;
interior ™ gy
Activation
temperature
; 6 :
GB SIA ? SIA < > V <V W Interaction

l range



In irradiated nano-crystal W

W as a plasma facing material, will subjected to 14 MeV neutron
irradiation, and a high density of low-energy H/He. Radiation defects
are created in the material. These defects not only affect the mechanical
property of W, but also introduce trapping sites for H/He ions.
Suppressing of the displacement damage in W by introducing defect
sinks into W is of great engineering significance.
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Compared with other metallic systems, how the radiation-created
Interstitial, vacancy interact with the GB is not well understood. The
Interaction inherently occurs at multiple time and length scales,
spanning from ps and nm to year and meter.




Simulation techniques at different scales
MS: molecular statics, 71 /1%
MD: molecular dynamics, 71/ /1% /I\D

TAD: temperature-accelerated dynamics, NEB. Dimer
IR i 2 ;
KMC: kinetic Monte Carlo, #fj /1% %245 1%

0K, /MER

. M

\\AKMC(NEB)’
- OKMC
To reveal the interaction of the defects with the boundary, sometimes, the
simulation techniques at different scales have to be combined, e.g., molecular
statics, molecular dynamics, and Kinetic Monte Carlo methods. In recent five
years, we have implemented these methods, and also developed some new
calculation methods, which were employed sequentially to investigate the
Interstitial and vacancy behavior in nano-crystals W and Fe. Generally, parts of
these methods are combined to give an across-scale insight into the radiation
damage healing process in nano-crystal tungsten.
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Results:
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1. Fundamental interaction of the interstitial
and vacancy with the grain boundary

11



Results: Primary radiation damage near the GB

We started with the simulation of displacement cascades near a 5(3 1
0)/[0 0 1] symmetric tilt GB in bcc W at 600 K.
The cascade was initiated by a 6 keV PKA.

1.0ps

Y(4)

2.0 ps

During a time period of 50 ps, it was found the GB preferentially
absorbed interstitials, while vacancies remained immobile. Some di- and
tri- vacancy were also produced near the GB. 12




RESU ItS: Formation energy for the vacancy and interstitial near the GB
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Calculations of defects formation energies show that the SIA is
extremely tightly bound to the GB. The binding energy for the
vacancy and interstitial is 0.86 versus 7.5 eV, respectively.
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Results: Diffusion of the vacancy near the GB
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Calculations of diffusion barriers near the GB show that the SIA
has extremely high mobility. The vacancy diffusion near the GB
IS greatly accelerated. 14




Results: spontaneous annihilation region at the GB and in the bulk
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Similar energetic feature around the interstitial: there forms
an spontaneous annihilation region both near the GB and In
the bulk. 15




Results: Basic interaction parameters

N
(to characterize the  (to characterize the catalysts
sink for defects) for V-SIA annithilation)
ybulk OB GrAbulk  QTASE ann$B  annieaCB
Barrier (eV) 1.8 098 0.002 0 0 0.31
T, (K) 702 382 1 0 0 121
Range (A) 9.4 26.5 10 1.6
Fraction (%) 3 8 3 3

The GB enhances diffusion and annihilation of interstitials
and vacancies within a limited region. MS calculations
provide necessary parameters for high level simulation of
damage evolution at long time scale.

X. Lietal., Nuclear Fusion (2013), 53, 123014
X. Li et al., Journal of Nuclear Materials (2014), 444, 229-236  *°



2. Interstitial clusters behavior near the grain
boundary:

|. Segregation and reflection
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Atomic structures of the SIA, and GBs

¢ The bulk SIA-cluster iIn
W is composed of parallel
<111> crowdions.

¢ The GB Is composed of
the locally loose region .-
and also dense region.
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Then, how does the local GB structures affect the SIA-cluster
behavior nearby and the annihilation mechanism ?

18



Results: Segregation

E—
Pure X5
(a)* 1w 7 B3 (8] 2 3 f1 (7 (D
oA (SIA: SIA?:G
[
< &%
/—\20- - [ ]
< 1 |3 . £ X
;10- : - 8. $ B H .
] o & ® 1H | 2
R N Es TN R e s T .
) o 10 20 30 10 20 3 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30
X (A)

Locally loose region near pure X113

v'A SIA_ was intentionally put at several typical sites about 10 A away

from the GB.

v'Near the locally loose region, both the single SIA and SIA-cluster were
always observed to move towards the GB via replacement-atom
sequences during multiple runs of MD simulations. Therefore, the locally

loose GB region acts as a sink for interstitial and clusters.




Results: Reflection
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Near the locally dense region, the SIA cluster was observed to be
rebounded back into the grain interior in MD simulations of SIAn
behavior near the GB. This motion was termed as the interstitial

reflection by the GB. 20




Results: Reflection

v"We speculated that the locally loose region either could not
accommodate excess SIAs, conseqguently scattering them into the
neighboring vacant region or even reflecting them back into the
grain interior.

v'To support the above speculation, more MD simulations were
designed and performed. First, the locally loose region was
artificially loaded with the SIA,. Then, it was more frequent to
observe the reflection of the newly produced SIA.. The newly
created SIA was reflected back into the bulk as a whole rather than
dissociation.




Results: Energy landscape for single SIA near X5

v'To understand the trapping |
and reflection of the SIA, by the - .
GB, the kinetics of the SIA near

the GB were investigated.

[310] (A)

s

v'Near the locally pure GB, a descent
energy landscape was obtained (Fig.
(c)), e.g., along paths d, and d, (Fig. _’]
(a)). It suggested an energetically and @2
kinetically favorable trend for the &,
SIA to be trapped by the GB. The 56,
prediction was consistent with the Y/
aforementioned current observations L | {13
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Results: Energy landscape er single SIA near other GBs
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v We further calculated the SIA energy landscape near other GBs;

v Three types of the SIA energy landscapes are obtained: downhill (1);
; nearly uphill (111).

prohibited near a tight region.

v" This is closely related to local GB structures. The SIA tends to reside at a local
loose region barrier-freely or overcoming a barrier while the absorption is

23




Results: Reflection
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v Therefore, a more general conclusion is: for the interstitial and
Interstitial cluster of parallel <1 1 1> crowdions, their behavior near
the GB, segregation or reflection, is determined by the local GB
density. As the density is below a certain value, the corresponding

region will reflect interstitials. Otherwise, the region acts a sink for
interstitials. “




ReSU ItS: OKMC model for evaluating the effect of IR on SIA -V annihilation
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v To evaluate the effect of the interstitial reflection on the
annihilation capacity, we performed OKMC simulations.




Results: Effect of IR on SIA, -V annihilation
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v"We designed two types of the SIA energy landscape. One is
climbing and then descent; the other one is just climbing.

v’ The annihilation of bulk vacancies was enhanced due to the
reflection of an interstitial-cluster of parallel <1 1 1> crowdions
by the GB.




2. Interstitial clusters behavior near the grair
boundary:

1. Dynamic interstitial emission



Results: Static SIA, -V interaction
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Out of these regions, the diffusion of Reaction coordinate
the V via conventional hop was also
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Results: Dynamic SIA, -V interaction near the GB
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By performing MD simulations of the interstitial (SIA) and vacancy
(V) behavior near a X5(310) grain boundary (GB) In tungsten, we
found the SIA first moved along the GB and then recombined with
a V near the GB. Such mechanism should depend on the diffusion
property of the SIA along the GB. 2




“Results: Diffusion of SIA, along the GB

v'Therefore, we calculated the diffusion of (Q)osf T
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and X85. The binding energy is over 0.6 eV. 1.0: E/A _
Thus multiple SIAs at the GB can be , 2 W\
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y : 0.0-/ -

however, comparable to that for the V — T ;
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except in GBs of X£25 and X85.
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Results: Dynamic SIA, -V annihilation prospect
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v'The dynamic annihilation prospect at several typical experimental temperature values
was then investigated by the OKMC method. The focus was on the long-ranged diffusion of
the defects and the collective/coupled motion of defects at the GB and near the GB.

v As the diffusion energy barrier of the SIA along the GB (E;*) is very high (e.g. in GBs of
X25 and X85), the SIA is not activated at the GB at the temperature of interest e.g. 10, 563
and 850 K. In this case, the SIA is pined at the GB after segregation from the bulk. Then,
the bulk V either hops towards the GB once activated or remains immobile in the bulk as it
IS not activated. In this case, the annihilation of the V with the SIA is described by their

. . 31
static Interaction.



Results: Dynamic SIA, -V annihilation
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v Therefore, a more general conclusion is: the annihilation mechanism at the GB
Is determined by the relative value of the interstitial diffusion energy barrier
along the GB and that for the bulk vacancy diffusion. As the ratio is below a
certain value, the interstitial segregated to the GB moves along the GB, gets
clustered therein, and then annihilates the vacancy via the coupled motion of
the cluster along the GB and the motion of the vacancy towards the GB.
Otherwise, the annihilation proceeds via the coupled motion of the interstitial
along the GB and the segregation of the vacancy nearby.
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Li, et al., Nuclear Fusion (2017, revised. Acta Materialia, (2016), 109, 115-127 i



3. A general insight into the interstitial emissiol
near a defect sink



Results: Squared potential well for the SIA
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Results: Potential well for the SIA
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v'By forcing an interstitial into the GB/surface/SIA , we calculated
the potential-well of an interstitial near these defect sinks.
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‘Results: Triangled potential well for the SIA
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v'Based on the triangled potential-
well approximation, we got a new
annihilation prospect.

v'As the SIA statically locates at a
defect sink, there forms a
“spontaneous annihilation region”.
As the SIA migrates locally along the
potential-well, the annihilation region
correspondingly propagates  or
extends towards the region nearby.
The vacancy therein is annihilated.
v'In this mechanism, the SIA dose not
necessarily migrate through the
potential-well at an energy barrier of
its binding energy with a defect sink
to re-enter the neighboring region
and annihilate vacancies therein.
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Results: New annihilation prospect
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~ Results: New annihilation prospect

(5]
']

v'During the extension and
propagation of the
“spontaneous annihilation
region” towards the bulk
region nearby, the SIA has
to overcome a certain low =

= p—
] " 1 "

Energy (eV)

[
1

|
I~
']

Reaction coordinate

B Emi: 0
energy barrier. _u A -
v'Meanwhile, the vacancy J]l m n
hop around the annihilation o I -
region was accelerated. 5%

vm

| [ I 1| [

0.2 0.6 0.8 1.0 1.2 1.4 1.6

Annihilation barrier (eV) 3



Results: New annihilation prospect
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v Therefore, a more general conclusion is: the interstitial emission mechanism at
a defect sink is determined by the ratio of the interstitial binding energy with
the sink to the potential-well half width.

v As the ratio is below a certain value, the annihilation could be induced by a
direct interstitial emission. Otherwise, the annihilation has to be started by a
vacancy-induced interstitial emission. 39




v'The two annihilation
mechanisms are
Illustrated here.

v Inherent IE:

The SIA migrates
locally along the
potential-well. The
annihilation region
correspondingly

propagates or extends
towards the region
nearby. The vacancy
therein is annihilated.

v'V-induced IE:
The V near the SIA
reduces the emission
energy barrier.

Inherent IE
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Summary

1. Within different parameter

regimes, the SIA, has a specific ¢
behavior and the corresponding
annihilation mechanisms. 3 Vinduced o f
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v For the interstitial and interstitial cluster of parallel <1 1 1>
crowdions, their behavior near the GB, segregation or reflection,
IS determined by the local GB density. As the density is below a
certain value, the corresponding region will reflect interstitials.
Otherwise, the region acts a sink for interstitials.
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v'The annihilation mechanism at the GB is determined by the
relative value of the interstitial diffusion energy barrier along the
GB and that for the bulk vacancy diffusion. As the ratio is below
a certain value, the interstitial segregated to the GB moves along
the GB, gets clustered therein, and then annihilates the vacancy
via the coupled motion of the cluster along the GB and the motion
of the vacancy towards the GB. Otherwise, the annihilation
proceeds via the coupled motion of the interstitial along the GB
and the segregation of the vacancy nearby.
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v'The interstitial emission mechanism at a defect sink is
determined by the ratio of the interstitial binding energy with the
sink to the potential-well half width.

v As the ratio is below a certain value, the annihilation could be
iInduced by a direct interstitial emission. Otherwise, the
annihilation has to be started by a vacancy-induced interstitial
emission.
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Results: Dynamic SIA, -V annihilation prospect
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v'In some GBs, e.g. 5 (2 1 0), £5 (2 1 0) and X13, E.*°" is much lower than the bulk value
of the V diffusion. Correspondingly, the time of the SIA and V to jump one step differs by
at least six orders of magnitude. In this case, the SIA migrates along the GB exceptionally
quickly after segregation, while the V remains static in the bulk.

v'Furthermore, the SIA at the GB quickly clustered at the GB. The cluster is mainly di-
SIA, which has lower mobility than the single SIA.

v'In the subsequent evolution, the cluster moved along the GB. Simultaneously, the bulk V
approached the GB, which was finally annihilated via such coupled process.

v'By comparing the annihilation fraction before and after the dynamic mechanism was
incorporated into the model, we found the mechanism enhances the annihilation of the V.



