2017 Third Research Coordination Meeting on Plasma-wall Interaction with Irradiated Tungsten and Tungsten Alloys in Fusion Devices

June 27-30, 2017 Vienna, Austria

Interstitial-mediated diffusion and aggregation mechanism for Re and Os precipitation in W

Hong-Bo Zhou, Yu-Hao Li, Guang-Hong Lu

School of Physics and Nuclear Energy Engineering BEIHANG University (Beijing University of Aeronautics & Astronautics)

Tungsten: a promising PFM in fusion devices

Advantages

- High melting temperature
- High thermal conductivity
- Low sputtering erosion

Extreme environment

- Neutron: 14 MeV
- H/He plasma (0-100 eV)
- High heat flux (10 MW/m²⁾

Role

• Withstand Neutron/H/He/Heat flux

Neutron irradiation

Nuclear transmutation of W under neutrons irradiation

Gilbert, et al., Nucl Fusion 51, 043005 (2011).

• Tungsten will undergo transmutation to its near-neighbors in the periodic table, such as Re, Os, Ta, and Hf.

Effects of transmutation elements on the properties of W

Intrinsic properties (without irradiation)

Irradiation properties (with irradiation)

Mechanical properties \rightarrow **Positive**

- ✓ Reducing DBTT
- \checkmark Improving both toughness and ductility
- ✓ Increasing recrystallization temperature

Thermal properties \rightarrow **Degradation**

- ✓ Reducing melting point
- ✓ Reducing thermal conductivity
 (5 wt.% Re → ~ 50% reduction @ 300 K)

The effects of transmutation elements under **irradiation** condition are significant different from that **under irradiation-free** environment.

Effects of transmutation elements: High heat flux

 The presence of Re could cause severe damage of W-PFM under high heat load, due to the reduction of thermal conductivity induced by Re.

Effects of transmutation elements: Neutron irradiation

Neutron irradiation, E	_n >0.1 MeV, 0.15	dpa	9 <u> </u>						
Voids	Dislocation	loops	10		Voids		Loops		Vickers hardness difference
	60% B	g 200			Radius, nm	Density, 10 ²² /m ³	Radius, nm	Density, 10 ²¹ /m ³	$\Delta HV_{irrad} - \Delta HV_{unirrad}$
₹	50 nm	1 2000	6	Proton-irradia	ted to 0.15	dpa			
	EGENETAL REPORT			W (500 °C)	1.8 2.2	13.9	3.8	1.9	185
alloys		The second second	10	(600 °C)	2.2	5.0	5.4	1.5	105
, C/w	g 200 g 200	1 1 -		W-30s	1.1	13.5	-	-	89
3		0 200		(500 °C) W-5Re-30s	14	9.8	_	_	_
		and a		(500 °C)	1.4	5.0			
				Neutron-irradiated to 0.15 dpa					
	and the second	A CARLES		W (600 °C)	1.3	6.4	7.9	4.6	207
	0.5	9 200		W-3Re	1.1	3.4	3.6	1.4	71
0	- + az	10		(600°C) W–5Re	1.2	2.1	3.2	1.5	80
	g 200			(600 °C)					
873 873/1073 1073	873 873/1073	1073		W-26Re	-	-	-	-	87
Temperature during irradiation, T/K	Temperature during	irradiation, T/K	\rightarrow	(600°C)					
J.C. He, et al., <i>Nucl. Fusion</i> 46 (2006) 877 T. Tanno, et al., <i>Materials Transactions</i> 52 (2011) 1447.									
Materials (Temperature during Irradiation	on) Voids		Swe	elling]	Loops		Dislo	cations
	Density 10 ²² m ⁻³	Radius nm	n %	Den	sity 10 ²	$^{21} { m m}^{-3}$ R	adius ni	m Densi	ty $10^{14} \mathrm{m}\mathrm{m}^{-3}$
W (873 K)	6.4	1.3	0.09	9 4.6	•	7	.9	4.0	
W (873–1073 K)	3.4	1.4	0.06	5 0.7		7	.4	4.5	
W (1073 K)	4.2	1.9	0.18	3 1.1		8	.5	2.6	
W-3Re (873 K)	3.4	1.1	0.03	3 1.4		3	.6		
W-3Re (873-1073 K)	2.0	1.1	0.02	2		_	_		
W–3Re (1073 K)	0.9	1.3	0.01	1.1		2	.8		

• Under low irradiation level, Re/Os can reduce the average size of voids and dislocation loops, which contributes to the application of W-PFM.

Effects of transmutation elements: Neutron irradiation

			N	d	$(Nd)^{1/2}$	$\Delta H_{\rm v}$	$\Delta H_{\rm v}$
			$[10^{22}/m^3]$	[nm]	$[10^{6}/m]$	(Calc.)	(Meas.)
1.54 dpa	W	Void	12.0	4.7	23.8	355	341
75000	W 10D -	Void	3.1	1.6	7.0	104	410
750°C	w-10ke	Prec.	41.7	9.5	62.9	422	419
0.96 dpa	W	Void	48.7	2.1	32.1	478	262
		Loop	4.7	4.7	14.9	74	303
538°C	W-10Re	Loop	< 0.2	~ 5	<2	<10	529
		Prec.	83.7	6.8	75.6	507	528

T. Tanno, et al. Materials Transactions 52 (2011) 1447.

Under high irradiation level, high density of Re/Os-rich precipitate has been observed in normal W-Re/Os alloys (< 28at.% Re; < 6at.%Os), substantially enhancing the irradiation hardening and embrittlement of W

Formation of radiation-induced Re/Os precipitation

A. Xu, et al. Acta Materialia 87 (2015) 121.

A. Xu, et al. Acta Materialia 124 (2017) 71.

Cluster feature	573 K 33 dpa W–2Re	573 K 33 dpa W–1Re–1Os	773 K 33 dpa W–2Re	773 K 33 dpa W–1Re–1Os
Re (at.%)	7.99 ± 1.42	1.33 ± 0.40	12.77 ± 2.86	1.88 ± 0.87
Os (at.%)	n/a	4.08 ± 0.70	n/a	6.88 ± 1.57
Radius (nm)	2.39 ± 1.03	2.77 ± 1.36	3.32 ± 1.88	1.93 ± 0.82
Number density ($\times 1000 \ \mu m^{-3}$)	1717 ± 72	1095 ± 56	812 ± 54	2467 ± 112
Volume fraction (%)	9.01 ± 0.38	7.33 ± 0.38	11.21 ± 0.74	9.59 ± 0.44

• Using Atom Probe Tomography method, it is found that even with extremely low Re/Os concentration (1~2 at.%), there is also obvious Re/Os aggregation in W.

• These Re/Os-rich clusters are considered as the precursors of the precipitation.

Effects of radiation defects on Re/Os precipitation in W

It should be noted that Re/Os precipitation only occurred under irradiation.

• The significant difference between irradiated and irradiation-free W is the radiation-induced defects (vacancy and self-interstitial atom).

Computational methods

First-principles method

- Density functional theory
- VASP code, PAW-GGA
- Ecut: 400 eV
- Force on all the atoms : less than 10⁻³eV/Å
- Supercell size: $4 \times 4 \times 4$ (128-atoms), $5 \times 5 \times 5$ (250-atoms)

Thermodynamic models

- Arrhenius diffusion equation
- Classical nucleation theory

I. Behaviors of Re/Os in intrinsic W

Stability of a single Re/Os in W

Stability of Re/Os clusters in W

- Re atoms are energetically favorable to disperse separately in bulk W due to the Re-Re repulsive interaction (negative binding energy).
- The binding energy of Os clusters are positive, suggesting Os prefers to get together in W.

Nucleation of Os clusters in W

• Despite the attractive interaction between Os atoms, there is still a large activation energy barrier (~ 1.10 eV) for the formation of Os clusters.

• Thermodynamically, the nucleation of Re/Os clusters are difficult in bulk W.

Diffusion energy of Re/Os/W in W

The diffusion energy of Os is the lowest via the mono-vacancy mechanism, followed by Re and W.

Diffusivity of Re/Os/W in W

• The diffusion coefficient of Os is the largest via the mono-vacancy mechanism, followed by Re and W, and such sequence is in good agreement with the experiment results.

I. Behaviors of Re/Os in intrinsic W

II. Behaviors of Re/Os in irradiated-W

• Coupling of a point defect with a single Re/Os atom in W

Interaction between Re/Os and vacancy

- There is strong attractive interaction of Re/Os-vacancy pair.
- The charge density between Re/Os and W is much lower than that of W-W, which means the existence of Re and Os weakens the interatomic bond of W atoms surrounding them and benefits to the vacancy formation.

Interaction between Re/Os and vacancy

Energy barrier: eV

5		path	pure W	W-Re	W-Os
		1	1.65	1.58	1.56
	• Ke/Us	2	1.65	1.56	1.38
	• W	3	1.65	1.75	1.84
	vacancy	4	1.65	1.56	1.40
		5	1.65	1.68	1.69
O		6	1.65	1.49	1.27

• Due to the high diffusion energy barrier of vacancy (1.38~1.84 eV), the formation of Re/Os-vacancy must overcome a high energy barrier.

Interaction between Re/Os and SIA

There is strong attraction between <111> dumbbell of SIA and Re/Os.
There exists a "spontaneously segregation region", where SIA will segregate to Re/Os via barrier-free process.

Formation of most stable Re/Os-SIA pair

• Overcoming a low energy barrier (Re/Os: 0.25/0.09eV), the metastable Re/Os-SIA pair will transform to the most stable Re/Os-W dumbbell.

SIA vs Vacancy

		SIA	Vacancy
Diffusion energy barrier in bulk W (eV)		< 0.05	1.65
	Binding energy (eV)	0.85	0.24
Re	Energy barrier for coupling (eV)	0.25	1.65
	Interactive region	~ 17	~ 7
	Binding energy	1.87	0.54
Os	Energy barrier for coupling	0.09	1.65
	Interactive region	~ 17	~ 7

Compared with Re/Os-vacancy pair, Re/Os-SIA pair has a larger binding energy, a much wider interaction range and an extremely lower energy barrier.
SIA will be preferentially trapped by Re/Os, forming IS-Re/Os.

I. Behaviors of Re/Os in intrinsic W

II. Behaviors of Re/Os in irradiated-W

- Coupling of a point defect with a single Re/Os atom in W
- Effects of point defects on the clustering of Re/Os: Thermodynamically
- Effects of point defects on the clustering of Re/Os: Kinetically

Interaction between vacancy and multi-Re/Os atoms

- Re/Os prefers to segregate to vacancy, forming a three-dimensional spherelike configuration.
- The presence of vacancy will increase the binding energy of Re/Os clusters.

Effect of vacancy on Re/Os clustering in W

- Vacancy can significantly reduce the total nucleation free energy change of Re/Os clusters in W.
- Thermodynamically, the presence of vacancy will facilitate the nucleation of Re/Os in W.

Interaction between SIA and multi-Re/Os atoms

- Interstitial-mediated Re/Os clusters prefer to aggregate on the {110} planes and form two-dimensional platelet-like configurations.
- SIA can increase the binding energy of Re/Os clusters in W.

Effect of SIA on Re/Os clustering in W

Similar with vacancy, the presence of SIA also reduce the total nucleation free energy change of Re/Os clusters, and facilitate the nucleation of Re/Os in W.
Because the binding energy of Re/Os-SIA is larger than that of Re/Os-vacancy, SIA has a more significant effects on the clustering of Re/Os in W.

I. Behaviors of Re/Os in intrinsic W

II. Behaviors of Re/Os in irradiated-W

- Coupling of a point defect with a single Re/Os atom in W
- Effects of point defects on the clustering of Re/Os: Thermodynamically
- Effects of point defects on the clustering of Re/Os: Kinetically

Diffusion of substitutional Re/Os

Reaction coordinate

 ✓ Bulk W: High diffusion energy barrier (Re/Os: 1.63/1.36 eV)
 ✓ W surface: High diffusion energy barrier (Re/Os:0.99/0.95 eV) (vacancy- and vacancy cluster-mediated diffusion)

Diffusion of interstitial Re in W

• The diffusion energy barrier of IS-Re in W is only 0.11 eV, which is much lower than that of substitutional Re/Os.

Therefore, IS-Re can easily diffuse in W via three-dimension.

Diffusion of interstitial Os in W

- Similar with IS-Re, IS-Os also has a much lower diffusion energy barrier (~ 0.40 eV) than substitutional Os, which means that IS-Os can also easily diffuse in W.
- Interstitial-mediated diffusion could dominate the migration of Re and Os in W under high irradiation level.

Nucleation of Re/Os (2-atom cluster)

W

• IS-Re/Os can be easily by trapped substitutional Re/Os, and form <110> Re/Os-**Re/Os dumbbell structure.**

• Due to high binding energy (> 0.90 eV), the <110> Re/Os-Re/Os dumbbells are verv difficult to diffuse or dissociate.

Growth of Re/Os clusters in W

• Stable Re-Re/Os-Os pair will serve as trapping center for subsequent IS-Re/Os, leading to the growth of Re/Os clusters in W.

Interstitial-mediated diffusion and aggregation mechanism for Re/Os precipitation in W

Diffusion of interstitial Re/Os

Interstitial-mediated mechanism

Re/Os-rich cluster

Nucl. Fusion 57, 046006 (2017) Acta Mater. (under review)

Thermodynamic stability of Re/Os clusters in W

- Due to the repulsive interaction between Re atoms and the high energy barrier for the Os nucleation, the formation of Re/Os clusters in bulk W is difficult.
- Presence of radiation-induced defects (vacancy and SIA) will reduce the total nucleation free energy change of Re/Os clusters, and facilitate the nucleation.

Kinetic processes for the formation of Re/Os clusters in W

- Re/Os serves as a trapping center for vacancy and SIA with a preference for SIA.
- Interstitial-mediated diffusion could dominate the migration of Re and Os in W under irradiation condition.
- The IS-Re/Os can be easily trapped by the SS-Re/Os, and form high stable Re/Os-Re/Os <110> dumbbell.
- The Re/Os-Re/Os dumbbell can serve as trapping centre for subsequent interstitial-Re/Os, leading to the growth of Re/Os-rich clusters in W.

