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History
TITAN Project (2007-2012) PHENIX Project (2013-2018)

Deuterium retention in W irradiated Deuterium retention in W irradiated
with neutrons at coolant temperature with neutrons at elevated temps.
of HFIR (~50 ©C). (300-1100 ©C).

IMR-Oarai (2015-)

Specimens irradiated in TITAN Project and Tohoku U.—SCK/CEN Collaboration

(BR2, at 290 °C), state of the art positron annihilation, TEM and 3D Atom Probe
analyses.
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Tritium Plasma Experiment (TPE), Compact Divertor Plasma Simulator
Idaho National Laboratory (INL) (C-DPS), IMR-Oarai, Tohoku U.



Depth profiles of D in W after neutron irradiation in HFIR, ORNL at
~50 °C followed by exposure to high-flux D plasma at 200 or 500 °C.

Deeper penetration of D at 500 °C!
D conc. Reached ca. 1 at%!
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Significant increase in D concentration by n-irradiation!

Exposure to D plasma in Tritium Plasma Experiment (TPE)

Sample temp.:200 and 500 °C., D ion energy: 100 eV

Flux:(5-7) X 10?1 D ms, Fluence:(5-7) X 10%> D m=2(10 ks)
Y. Hatano et al., Nuclear Fusion, 53(2013)073006.



Thermal desorption spectra of D released from non-irradiated and

n-irradiated W (0.025 dpa).
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TDS spectra of n-irr. and non-irr. W

at T, =200 and 500 °C.
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D retention at T, = 500 °C was
6.4 x 102 D m=.

Because D concentration was
0.1-0.2 at.% (i.e., 6.3-12.6 x 10%°
D m3), penetration depth of D at
T, = 500 °C was evaluated to be
50 - 100 um.

Y. Hatano et al.,

Journal of Nuclear Materials,
438(2013)S114-S119.

Nuclear Fusion, 53(2013)073006.

A large D retention at T_, = 500 °C was ascribed to deep penetration

of D into the bulk.
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1. Long-range diffusion of D in n-irr. W
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Compact Divertor Plasma Simulator
(C-DPS)

Specimen:

W disk (¢ 6 X t 0.5 mm)

grains 1 surface

Belgium Reactor 2 (BR2), 290 °C, 0.06 dpa

Plasma exposure: C-DPS at 290 °C

Characteristics of C-DPS
v' Good temperature control (5 °C).

v’ Temperature rise before plasma
ignition by electron bombardment.

v TDS without air exposure.

v' TEM sample (¢ 3 mm, t 0.1 mm) is
acceptable.

€ No tritium
€ Max 500 °C at this moment



2. Defects responsible for D trapping (positron annihilation)

i. Neutron irradiation at 300 °C to 0.3 dpa (48 days in HFIR, ORNL, in TITAN
Project) (¢3X%X0.2 mm W disk)

ii. Post-irradiation annealing at 300 °C in vacuum and 0.1 MPa D, gas for
100 and 400 h.

iii. Positron annihilation spectroscopy (PAS) and TDS.

T. Troev et al., Nuclear Instruments and Methods in Physics Research B 267 (2009) 535-541
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Fig. 3. Correlation between positron lifetime and the number of vacancies in a Number of Hydrogen atoms

nano-void in tungsten.



3. Neutron-irradiation under hydrogen gas atmosphere:
Capsule design and irradiation plan

(1) Motivation

In many experiments in this field, damages are created in hydrogen-free
specimens, and then D is introduced by plasma- or gas-exposure. Only a limited
number of studies examined defect migration under the presence of hydrogen.

In principle, vacancy-hydrogen clustering reduce mobility of vacancies.

Irradiation study under the presence of hydrogen is necessary!

In this study, metal hydride is used as a source of hydrogen gas.

Heating MHx->M + (x/2)H,
Cooling M + (x/2)H, -> MHx

H. Atsumi in Kindai University performed neutron irradiation of graphite with Mg,NiH,,.
(private comm.)



4. Effects of Re

Due to transmutation, W automatically becomes W-xRe-yOs alloy under
neutron irradiation. Hence, effects of Re have to be investigated.

Experimental Procedures

Specimens: Plates of pure W and
W-5%Re alloy (10 X 10 X 0.5 mm)

* Jrradiation with 6.4 MeV Fe ions to
0.5 dpa at 250-1000 °C.

* Exposure to D, gas at 0.1 MPa and
400 °C.

* NRA and TDS.

 Some specimens were irradiated at
250 °C and then annealed at 800 °C.

NRA was performed in IPP Garching, Germany
by T. Schwarz-Selinger and M. Zibrov.

Concentration (appm)

2
Irradiation Time (years)

Transmutation in W under fusion
neutron irradiation (M. R. Gilbert &
J. -Ch. Sublet, Nucl. Fusion 51 (2011)
043005).



The presence of Re reduced trapped D by orders of magnitude after

irradiation at high temperatures!

(Y. Hatano et al., Nuclear Materials and Energy 9 (2016) 93-97)

W irradiated with 6.4 MeV Fe to 0.5 dpa
+ exposed to D, gas (673 K@ 100 kPa @ 10 h)
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Depth profiles of D in W and W-5%Re
irradiated with 6.4 MeV Fe ions to 0.5
dpa at the Bragg peak at different

temperatures.

Correlation between irradiation temperature
and concentration of D trapped in radiation-
induced defect at the Bragg peak. Half-filled
points showed data after irradiation at 523 K
and post-irradiation annealing at 1073 K.



Reduced amount of trapped D can be explained by either of (1) reduced density of traps,
and (2) reduced binding energy between D and traps.

Thermal desorption spectra giving the desorption peaks at almost the same
temperature showed that the binding energy was comparable between W and W-5%Re
alloy. In other words, reduced D retention by Re was due to reduced trap density.

(Y. Hatano et al., Nuclear Materials and Energy 9 (2016) 93-97)
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Thermal desorption spectra of D from W and W-5Re alloy irradiated at 800 C.



Table 1 Results of positron lifetime measurements for W and W-5%Re samples
before and after the irradiation with 6.4 MeV Fe ions at 1273 K to 0.5 dpa.
(Y. Hatano et al., Nuclear Materials and Energy 9 (2016) 93-97)

W W-5%Re
W W-5%Re

(non- (non-
(irradiated) (irradiated)
irradiated) irradiated)

Positron

124.7

lifetime 133.9 137.7 138.9
467.4

(ps)

v Orders-of-magnitude reduction in D retention due to Re-assisted vacancy-interstitial
atom recombination.
T. Suzudo et al., Modelling Simul. Mater. Sci. Eng. 22 (2014) 075006
X. -S. Kong et al., Acta Mater., 66(2014)172



M. Fukuda et al. /Journal of Nuclear Materials 455 (2014) 460-463 463

Table 3
Summary of the microstructural observation in the matrix of pure W and W-Re alloys after the neutron irradiation.
Irradiation Material  Void Dislocation loop Precipitate
- Size Number density Size Number density Size Number density
-3 -3 -3
L (m™) () ) Major axis Minor axis )
(nm) (nm)
500 °C, 0.90 dpa PureW - - 2.9 3.3 x 10% 7.8 3.6 8.6 x 10%
W-5%Re - - 24 5.2 x 10%2 3.0 0.8 26 x 108
W- - - - - 3.2 1.2 9.0 x 102
10%Re
800 °C, 0.98 dpa PureW 3.8 8.0 x 10% - - 26.5 6.1 3.6 x 107
W-3%Re ~1 <1.0 x 10%° - - 11.6 2.0 13 x 102
W-5%Re  ~1 <1.0 x 10%° - - 10.7 2.6 32 x 105
W- ~1 <1.0 x 10%° - - 10.3 2.4 29x 103
10%Re
W- - - - - 17.8 6.1 14 x 102
26%Re

Microstructure after HFIR irradiation reported by Fukuda et al., Tohoku U.

Fukuda et al. observed significant reduction in void density and formation of precipitates
by Re addition after neutron-irradiation in HFIR at 800 C.

The present observation is consistent with their observations.



5. Summary

v" Neutron irradiation induces V and V clusters in various sizes, and those act as
strong trap sites with detrapping energy of 1.8-2 eV.

v' Penetration depth of D was proportional to square root of plasma exposure
time.

v’ Re significantly reduces trap concentration at temperatures > 500 °C. Post-
irradiation annealing did not work. Dynamic process under irradiation plays
key-roles.

v’ High temperature neutron irradiation (800 and 1100 °C) of W-Re alloy in HFIR
was completed in PHENIX Project. Specimens are waiting PIE.

v" Neutron irradiation under H, gas atmosphere (400 °C, 0.1 dpa) is in progress
under the framework of IMR-Oarai—ORNL collaboration, to understand effects
of hydrogen on microstructure development under irradiation.



