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Francesco Ferroni, Xiaoou Yi, Kazuto Arakawa et al., High temperature annealing of ion irradiated tungsten,
Acta Mater. 90 (2015) 380—393. The movie shows the dynamics of recovery of defects in tungsten at 1100°C.
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OUTLINE

1. Production of defects in collision cascades in tungsten.

2. High and low-temperature mobility of radiation defects.

3. Diffusion-mediated models for microstructural evolution:
1. Self-diffusion of dislocations

2. Vacancy-diffusion-mediated evolution

4. Anomalous phase decomposition of W-Re alloys
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Defect production in tungsten

The maximum cascade energy is (a
non-relativistic estimate assuming a

: : A 150 keV collision
head-on elastic neutron-atom impact)

cascade in tungsten
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Defect production: fundamentals

1. Given arbitrarily high energy of the initial ion/neutron
impact, is it possible to produce a defect cluster of
arbitrarily large size directly in a cascade event?

2. The “dark matter” question: how many defects
produced in cascades remain invisible to transmission
electron microscopy and other high-resolution methods,
and what is their effect on microstructure?

A.E. Sand et al. EPL 103 (2013) 46003; D.R. Mason et al., JPCM 26 (2014) 375701,
X.Yietal., EPL, 110 (2015) 36001; J. Marian et al., Nuclear Fusion 57 (2017) 092008
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Defect production in tungsten

Average interstitial cluster distributions: cascades at 100K
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R.E. Stoller (2012) in: Comprehensive Nuclear Materials

Prior to 1991 it was assumed that defects D_'Str'bUt'On of defect cluster

were produced as Frenkel pairs (individual sizes follows a power law

vacancies and self-interstitials). C.H. Woo A

and B.N. Singh (1991) noted that clustering F(n) =—;N< n* ~ 600

of defects in collision cascades may have a n

significant effect on the evolution of radiation- N :

A=7.45;S=1.63

induced microstructure. Similar findings were
reported derived from MD simulations.

A.E. Sand et al., EPL 103 (2013) 46003
24 T. Diaz de la Rubia, M.W. Guinan, PRL 66 (1991) 2766;

&l C.H. Woo, B.N. Singh, Phil. Mag. 65 (1992) 889-912 S CCFE
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Power law of defect clustering
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Large clusters are rare BUT once

they form they contain the majority
of defects. Large-scale rare events
dominate microstructural evolution.
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frequency of occurrence

] MD (average over bins)
— power law fit

5 10 2 5 102 2
SIA cluster size

Distribution of defect cluster
sizes follows a power law

F(n):is; n<n*= 600
n
A~7.45;5=1.63<2

A.E. Sand et al., EPL 103 (2013) 46003
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Temperature dependence of defect production

Size distribution of defects in tungsten: 0.01dpa,
From room temperature to 800°C
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Comparison to experiment: loop sizes

expt, 30K expt, 300K T expt, 773K T expt, 1073K .

frequency

model, 300K + model, 750K + model, 1050K

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
By 2 2 2
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loop diameter (nm)

Explaining experimental observations require taking into account interaction
between the defects. Fewer but larger defects remain in the material at higher
temperatures. Experimental data correspond to the low dose limit (0.01 dpa)

, 3 where cascades do not overlap. Simulated distributions correspond to t=1 s.
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A 150 keV cascade in tungsten,
Derlet - Nguyen-Manh - Dudarev

Interatomic potential

Modelling the evolution of complex
cascade configurations still remains one of

the most challenging topics in the treatment
of radiation damage phenomena.

A 150 keV cascade configuration, courtesy of A.E. Sand



Diffusion of defects: vacancies

Al Cu Au Ni Pd Pt Pu
Ey 0.580 1.044 0.7821 1.37,61.43 7 1.70] 1.18 1.31, 1.36, 1.08"
1.65"
E,, 0.57m 0.724d - 1.285,¢ 1.08" - 1.51) -
A Nb Ta Cr Mo \%% Fe
Ey 251! 2.99! 3.14 2.64 2.96, 2.96' 3.56! 2.02,22.07,%2.15!
E,, 0.62! 0.91! 1.48! 0.91! 1.28! 1.78! 0.65, 0.67,% 0.64'
C Si Ge Be Ti Zr Hf
Ey g.2f 3.17,°3.29¢ 2.3h 0.81,7 1.09° 1.9702.139 | 2.17,91.86° 2.229
E, 1.7t 0.4¢ - 0.72B, 0.47B, 0.51B, 0.79B, 0.91NB4
0.89NB° 0.61NBP 0.67NBd

It is possible, by means of a DFT calculation, to accurately predict vacancy migration
and formation energies in a variety of materials, even where there are no experimental
data available. Values derived from DFT calculations are free from impurity effects. It is
possible to determine the strength of interaction between vacancies and impurities, also
by means of a DFT calculation.
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Diffusion of defects: self-interstitials

(111) (110) (100) Tetrahedral Octahedral E,,

Fe 4.66,> 4.45¢ 3.94,> 3.75¢ 5.04,0 4.75¢ 4.26° 4.94¢ 0.34¢
\% 3.37,43.14¢ 3.65,43.48¢ 3.92,43.57¢ 3.84,9 3.69¢ 3.96,93.62¢

Nb 5.254 5.604 5.954 5.764 6.06¢

Ta 5.834d 6.384 7.004 6.774 7.104

Cr 5.664 5.68¢ 6.644 6.194 6.724

Mo 7.42,47.34¢ 7.58,47.51¢ 9.00,4 8.77¢ 8.40,9 8.20¢ 9.07,9 8.86¢

%Y 9.554 9.844 11.494 11.054 11.684

Al 1.959f 1.869¢ 1.579¢ 1.790f 1.978f 0.084f
Ni 4.698 4.99¢ 4.07¢ 4.69¢ 4.25¢ 0.14¢
Si 3.84h 3.80 (hexagonal) 3.85 (caged) 4.07h 4.8 0.18h

DFT calculations prove particularly useful in the treatment of self-interstitial atom (SIA)
defects. The formation energies of SIA defects are much larger than the formation
energies of vacancies, and SIAs do not form thermally at temperatures below 1000°C.
SIAs do form under irradiation (a Frenkel pair = a vacancy + a SIA), making DFT an
essential tool for modelling radiation damage phenomena. Values in blue boxes refer
to the lowest energy most stable configurations.
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Diffusion of self- mterstltlal defects In tungsten.

o=t

15

Energy per atom (eV)

ol== | S
0 0.2 0.4 0.6 0.8 1

Displacement (a_111)

TABLE 1. Fitted parameters and derived quantities for the
metals of groups V and VI. Also given are the estimated migra-
tion temperatures 7, in kelvin, and their experimental values
taken from Ref. [2].

Metal V, (eV) B (eV/a®) « n T, est. T, [2]

A% 0.689 41.1 .31 0575 ~8 <6
Nb 0.835 69.1 1.41 0488 ~0.3 <6
Ta 0.940 81.6 1.36 0477 ~0.1 <6
Cr 1.03 63.1 1.73 0568  ~100 ~40
Mo 1.41 130 1.66 0463  ~30 35
W 1.90 177 1.64 0460  ~30 27

S.P. Fitzgerald and D. Nguyen-Manh, PRL 101 (2008) 115504

Potentlal barrier for migration of self-interstitial defects can be estimated
analytlcally by fitting parameters of the Frenkel-Kontorova model to DFT data F E

L —
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Diffusion of self-interstitial defects in tungsten.
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T.D. Swinburne, P.-W. Ma, S.L. Dudareyv,
New J. Phys. (2017) in press

Interatomic potentials calculations show that the potential barrier for the diffusion of
LI 4~ self-interstitial atom defects in tungsten is of the order of 0.017 eV. DFT calculations

4 suggest that the barrier for migration may be even lower, of the order of 0.002 eV.
This has implications for diffusion of defects at low temperatures.



Diffusion of defects

Left: diffusion of a self-interstitial dislocation loop in Fe at 500K, classical molecular
dynamics simulations, energy filtering has been applied. Right: diffusion of a single
self-interstitial defect in tungsten at 300K, full lattice view.
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Diffusion of defects at very low temperatures.
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Diffusion of defects at very low temperatures.
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Due to an exceptionally low defect migration barrier, interstitial defects exhibit very
high diffusivity of order 103 um2s-! over the entire range of temperatures from 10 K to
300K.

The origin of high diffusivity is the same as that of zero atomic vibrations, well visible in
diffraction experiments as non-zero Debye-Waller factors. No tunnelling is involved, as
X L defects remain heavy classical particles at all temperatures above 1K.
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Dislocations: evolution of radiation damage

Dominant processes involving dislocations

Glide (conservative diffusion
of defects and dislocations)

-

&

Self-climb

>
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Vacancy-diffusion-mediated
climb
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Self-climb of dislocations

The Coalescence of Dislocation Loops by Self Climb

By J. A. TURNBULL

Central Electricity Generating Board, Berkeley Nuclear Laboratories,
Berkeley, Gloucestershire GL13 9PB

[Received 15 September 1969] /P Q’;
A 2] g9 d
Z
,Loop B
V- 2va® exp(—E,./kpT) dE < |
T ksT)R® d >
m(kpT) v Loop A X

Iilustration of the geometry used in § 3.3 when considering the vacancy flux
in the segment of pipe PQ on loop B.

Turnbull (1970) showed that interacting dislocation loops coalesce as a result of
migration, at loop perimeters, of virtual vacancy-interstitial pairs formed due to thermal
fluctuations. No real defects are formed in this process. Loops drift towards each
other in the negative direction of gradient dE/dx of elastic interaction energy.
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Self-climb of dislocations
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Dislocation self-climb occurs due to diffusion around the perimeter of dislocation loops,
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T.D. Swinburne et al., Sci Repts. 6 (2016) 30596

rity

independent of the vacancy atmosphere. At relatively low temperatures this vacancy-free
climb is much faster than conventional vacancy-diffusion-mediated climb.
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Real space models for microstructure

Three-dimensional formulation of dislocation climb

Yejun Gu?, Yang Xiang ™*, Siu Sin Quek¢, David J. Srolovitz %¢

‘nal of the Mechanics and Physics of Solids 83 (2015) 319-337 C X,t
oot sl S R XY _ v xt) -l (x,1)5(T)
mobile vacancies at
[ D, c(x,t
) =-2% g, )
mobile vacancies Q kBT

Here I" defines a dislocation line, so that jé[F] f (X)d X = j f (X)dS.

r

In the dilute gas approximation for the chemical potential of vacancies, we arrive at
the boundary value problem for a moving dislocation line. A dislocation line moves due
to elastic forces acting on it, which stimulate absorption or emission of vacancies:

D,Vic=hyv,o()
1, (X, 1) =kgT Inc(x,t);
¢ — ) =c,
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Real space models for microstructure

Three-dimensional formulation of dislocation climb
Yejun Gu?, Yang Xiang ™*, Siu Sin Quek¢, David J. Srolovitz %¢
Journal of the Mechanics and Physics of Solids 83 (2015) 319-337

The central step is the conversion of the boundary value problem into an integral
equation

o) L §b(v><d|)

Az D,

Assume that a dislocation line forms a closed loop. At large distances from the loop,
where |x-X’|>> loop size, this equation acquires a simple form:

c(x)NMD X §b (vxdI')+c,.

Here

§b (vxdl') = %, and Q) , (t) is the volume of the dislocation loop.
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Relaxation volume of a dislocation loop

Formula for the relaxation volume of a dislocation

oo Q, (1) = (b-A(t)

shows that the volume of a loop remains constant
even though the direction and magnitude of the loop
(%) vector area changes. Left: simulation of Brownian
motion of a dislocation loop in Fe. Below:
experimental observation of Brownian motion of a

dislocation loop, courtesy of Prof. K. Arakawa.

Molecular dynamics simulation of thermal Brownian
motion of a ¥2(111) dislocation loop in iron at 500K.

dglrel _
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Real space models for microstructure

The field of vacancies changes adiabatically, following the evolution of dislocation
loops (centres of loops are at X; )

1 5 1 ine._

c(X)~cC_+
4z D, T'|x-x| dt

Volume Qre| of a dislocation loop with Burgers vector D and area vector A is given
by the scalar product (0 A). Volume is positive for an interstitial loop and negative
for a vacancy loop.

pf AR A"

by

Interstitial loop, ., >0 vacancy loop, 2 ., <0

rel rel

,4 Above equations for c(x) can also be formulated as a set of ODEs for the velocities of
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Diffusion to/from surfaces

The computational efficiency of the treatment developed by Y. Gu, Y. Xiang et al.,
JMPS (2015) is fundamentally due to the use of “free-space” Green’s function

1
47D, |x-X|

G, (X, X') =—

This computational advantage is lost if, in order to take into account the boundary
conditions, we attempt to modify these Green’s functions. An alternative approach is
the Kirchhoff integral approximation, which retains the use of free Green’s functions

jdv[d) (x )a cpx(x) o, (x )acp (x)}

\Y

0D, (X)

J'dS{CD() ~®, (X)

S

00, (x)}

This formula is known as Green’s theorem (G.
Green, 1828). It provides the means for treating
surfaces and retains the advantages offered by

the free Green’s function formalism.

Authority



Diffusion to/from surfaces

We choose one of the functions in Green’s theorem as the vacancy concentration
field. The other is free Green’s function. This formula below shows that vacancy field
can be evaluated everywhere, if ¢(x) and its normal derivatives at surfaces are known.

[av '{C(x') angiﬁ’ ¥) 6, (0x) 8;X(X)} _ Ids{c(x')(n %) o X,)(n | @C(X.)ﬂ

. oX'

In the right-hand side of this equation, vacancy
concentration at a point x’, situated at a surface,
can be evaluated using the same approach as
the one developed for the dislocation loops.

Evaporation of vacancies from dislocation loops
Is driven by elastic self-stress. In the case of
surfaces, it is driven by surface tension.

Arrive at a system of coupled ODEs for the

velocities of nodes on dislocation lines and at

surfaces. This fully defines the dynamics of
diffusion-mediated evolution of loops and

United "

Kiniodoin cavities/surfaces.
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Diffusion to/from surfaces

Equations, describing the vacancy diffusion-mediated evolution of dislocation loops,
cavities and the external surface, have the form:

o(¥)e() =D, | ds{c(x')[n Mj G, (x, x')[n . 5C(X'>ﬂ
S OX' '

OX

Here @w(X) =1 inthe bulk, @(x)=1/2 at surfaces (this comes from the integration of
a delta-function at the surface) and @(x) =0 in the vacuum. ‘Surfaces’ also include
the toroidal surfaces wrapped around dislocation lines.

t= 0.s. Scaling= 2X.
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This animation shows evolution of voids, interstitial
and vacancy dislocation loops, evolving through the
Atomic evaporation and exchange of vacancies in tungsten

? Energy at 1750K.
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Movie1.mov

Applications:

t= 0.159 s. Scaling= 2X.
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Vacancy concentration profiles found in a typical
simulation. Vacancy loops (red) and voids (blue)
generate local zones with high concentration of
diffusing vacancies, exceeding the background
concentration by over two orders of magnitude.
Interstitial loops produce local vacancy depleted
zones.

Evolution of 20 cavities, 20 interstitial loops and 20 vacancy
loops randomly distributed with the average number density Journal of the Mechanics and Physics of Solids 103 (2017) 121-141

5x10¢ nm3, in a spherical sample of radius R=142 nm.

Objects’ radii are initially normally distributed: with the mean

of 3.2 nm and standard deviation of 1 nm (loops); with the

mean of 1 nm and standard deviation of 0.1 nm (18 smaller S F E
cavities); with the mean of 2.2 nm and standard deviation of =

0.22 nm (for the two larger cavities).
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Decomposition of W-Re alloys
under irradiation
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Transmutations due to exposure to fusion neutrons
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m - concentration dominated by metastable nuclide(s) M.R. Gilbert et al., Nucl. Fusion 51 (2011) 043005 & 52 (2012) 083019

Initially pure natural tungsten, exposed to neutrons with the spectrum of a DEMO fusion
reactor, transforms into other elements, including rhenium, osmium, helium and hydrogen.
Accumulation of rhenium gives rise to the formation of Re-rich precipitates, which embrittle
tungsten and reduce its thermal conductivity.
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Anomalous segregation in W-Re alloys
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The puzzling aspect of this phenomenon is that under irradiation, rhenium forms
precipitates in highly dilute alloys that, according to equilibrium thermodynamics,
should exhibit full solubility.
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Anomalous segregation in W-Re alloys

Model for binary W-Re alloys + vacancies as ternary W-Re-vacancy alloys. This
IS possible because lattice deformations, associated with vacancies, are small.
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