IMPACT OF HELIUM IRRADIATION ON TRITIUM RETENTION IN TUNGSTEN

E. BERNARD¹, R. SAKAMOTO², R. BISSON³, F. GHIORGHIU³, M. THOMPSON⁴, C. CORR⁴, M-F. BARTHE⁵, E. AUTISSIER⁵, P. DESGARDIN ⁵, A. KRETER⁶, N. YOSHIDA⁷, H. YAMADA², S. GARCIA-ARGOTE⁸, J. CHÊNE⁸, B. ROUSSEAU⁸, C. GRISOLIA¹

¹GCFMP, IRFM, CEA Cadarache, France ²NIFS, Japan ³PIIM, Marseille Provence University, France ⁴Australia National University ⁵CEMHTI, France
 ⁶Forschungszentrum Jülich GmbH, Germany
 ⁷Kyushu University, Japan
 ⁸Saclay Tritium Lab, CEA Saclay, France

DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

INTRODUCTION AND CONTEXT

• W: used in JET, WEST, ITER

→ intensive fluxes of He and H isotopes at high temperatures

Impact of He irradiation at the surface

- dislocation loops 7 <530°C
- bubbles

W-fuzz

W irradiated W irradiated with 6.5x10¹⁹ with 6.5x10¹⁹ $H.m^{-2}$ He.m⁻²

R. Sakamoto

He has a strong impact on the material.

These modifications can affect the trapping of hydrogen (T).

• He irradiation: experimental setups

- In situ conditions: LHD exposures
- Parametric study: PSI-2 exposures
- Micro and nano structure change of tungsten under helium irradiation
 - TEM observation and results
 - Larger scale characterization: TEM GISAXS coupling
 - Defects created in the material: PAS
- Impact of He irradiation on T inventory:
 - Tritium gas loading on massive W samples
 - Parametric study
- Conclusions and perspectives

EXPERIMENTAL PROTOCOL AND IRRADIATION SETUPS

MATERIAL PREPARATION AND EXPERIMENTAL PROTOCOL

Goal: ideal state of the W structure before He irradiation 0

- Easier evaluation and understanding of mechanisms at stake
- *Comparative study with "as received" W (with defects caused by* the manufacturing processes)
 - Tohoku Kinzoku pure W
 - 1500° C annealing for 2h
 - Mechanical polishing

IN SITU EXPOSURE: THE LARGE HELICAL DEVICE (LHD)

• LHD and the retractable material probe:

- LHD: Large Helical Device, a superconducting stellarator with heliotron configuration
 - A pair of continuous winding helical coils and 3 pairs of poloidal coils
 - R=3.9 m, a_{eff}=0.63, V_p~30m³, B_T~3 T
- Net-current free plasma with various heating methods (NBI, ECH and ICH)
- Observe real plasma-wall interaction conditions and complement them with laboratory exposures
- > Two retractable material probes installed for PWI studies:
 - Plasma exposure under various conditions: SOL plasma, divertor leg, CX particles
 - Electric feedthrough for controlling temperature
 - Motion feedthrough for controlling exposure condition (shutter and insertion)

IN SITU HIGH TEMPERATURE EXPOSURES: EXPERIMENTAL SETUP

• Holder 1: 17th LHD experimental campaign

Multi temperature exposure using temperature gradient between a heater and heat sink, 65 - 600 °C

• Holder 2:

18th LHD experimental campaign

Higher temperature exposure with reduced thermal loss structure, **500 - 800** °C

 Pre-thinned samples for TEM + large samples for Temperature Programmed Desorption (TPD)

- Goal: expose to CX particles inserting the retractable material probe at the 1st wall position
 - Sequences of 100 shots of NBI heated plasma discharges with helium gas puff
- Estimation of radiation damage profiles created at plasma-facing surface

- > 10²²-10²³ He.m⁻² fluences
- > 10²¹-10²² He.m⁻².s⁻¹ flux
- More helium implantation than displacement damage is expected

• PSI-2 (Jülich)

• A plasma-Surface Interaction laboratory device:

Stationnary plasma produced in a low pressure high-current arc discharge and directed toward a biased, temperature-controlled sample holder

• Conditions:

- 75 eV He plasma, 100 V bias
- Temperature: 523 to 1073 K

- Flux : 2.5x10²⁰ to 2.5x10²² s⁻¹.m⁻²
- Fluences : 3x10²³ to 1x10²⁶ m⁻²

Sample	W _{ref}	18-AL	20-CL	21-BL	21-AL	20-BL
Т (К)	/	473	1023	1053	1073	473
Flux (He.m ⁻² .s ⁻¹)	/	2.2x10 ²²	2x10 ²²	2.3x10 ²²	2.9x10 ²⁰	2.2x10 ²
Fluence (He.m ⁻²)	/	1x10 ²⁶	3x10 ²⁵	3x10 ²³	3x10 ²³	3x10 ²³

PAGE 10

STRUCTURE CHANGES IN W CAUSED BY HE EXPOSURE

CROSS-SECTIONAL TEM OBSERVATIONS

DAMAGE DISTRIBUTION

Bubble formation 0

- Distributes up to 70 nm depth at any temperature range.
 - > Bubble depth distribution is insensitive to vacancy mobility.
 - > supported by theoretical simulations by A.M. Ito and R. Kobayashi.
- Irradiation temperature *∧*

0 200 400 0 600 Temperature [°C] Size 🗷 and density 🛛 He migration at any temperature range but vacancy • Vacancy: 1,7 eV migration above 500°C.

LHD exposed samples

LARGER SCALE CHARACTERIZATION: GISAXS

GISAXS

LHD exposed samples

• Grazing-incidence Small Angle Scattering:

- non destructive technique using a photons probe to study nanostructure materials, combining the length scales of small-angle scattering and surface sensitivity of grazing incidence diffraction.
- ideal complement for TEM: determines average particle properties on a larger scale.
- Excellent agreement of the results on bubble characterization:
 - Nano-bubbles range from spheroidal to ellipsoidal, displaying exponential diameter distributions with mean diameters μ:

 μ_{TEM} =0.596 ±0.001 nm μ_{GISAXS} =0.68 ±0.04 nm

• Depth distributions were also computed, with calculated exponential depth distributions with mean depths r:

```
r_{TEM}=8.4±0.5 nm
r_{GISAXS}=9.1±0.04 nm
```

MICROSTRUCTURE EVOLUTION AT THE SURFACE

TEM+FIB

PSI-2 exposed samples

o Surface state:

- No flux dependence of the damage structure
- Significant change of the surface morphology: holes, fuzz
 - -> Overall roughness increase
 - > E_{He}<E_{sputtering threshold} yet material erosion?
- Undulating surface structure for high fluence
- Cross-sectional study:
 - Large flattened bubbles (>10 nm) at 1073 K
 - Surface undulation aligning with <100> direction

- Positron Annihilation Spectroscopy (PAS)
 - Non-destructive technique to characterize defects at the atomic scale located close to the surface
 - → Detect presence and free volume of defects
 - Traps for positrons (e+): low electronic density areas

vacancy cluster (nV) monovacancy (V)

He bubbles in W nV-mHe complexes

- > timelife of the positron \rightarrow presence of defects
- > positron energy \rightarrow scanned depth
- > type of annihilation \rightarrow electronic state

CEMHTI:

Great variation between materials: major role of W preparation process and pre characterization

DEFECTS CREATED IN THE W STRUCTURE: PAS

Sample	W _{ref}	18-AL	20-CL	21-BL	21-AL	20-BL
T (K)	/	473	1023	1053	1073	473
Flux (He.m ⁻² .s ⁻¹)	/	2.2x10 ²²	2x10 ²²	2.3x10 ²²	2.9x10 ²⁰	2.2x10 ² 2
Fluence (He.m ⁻²)	/	1x10 ²⁶	3x10 ²⁵	3x10 ²³	3x10 ²³	3x10 ²³

PSI-2 exposed samples PAS

• W_{ref}: no defect

- Free volume traps for positrons detected under 2 keV (0-10 nm depth)
 - Traps in the heavily damaged layer
- Free volume ~ monovacancy
 - He is present in the bubbles observed
- 20-BL (low temperature, low fluence): free volumes smaller than monovacancy

➢nV-mHe with m>n

- low tempeterature: no vacancy cluster?
- low exposure time: little He migration & 17

IMPACT ON TRITIUM RETENTION IN W

- Tritium handling at Saclay Tritium Lab
 - Technique: Gas overpressure at high temperature
 - no damage or defect created in the material structure
 - Tritium study:
 - + High sensitivity
 - + Mixed H/D/T exposures

- > Gas loading procedure:
 - Oxyde reduction
 - Tritium gas loading:
 - 2h at 450°C under 1 bar ${}^{3}H_{2}$
- > T room temperature desorption
- > T high temperature desorption (800° C)
- Sample dissolution for in-bulk T counting
 - > Global T inventory in the sample

Active material: D loading bench to couple results with surface analyses

Liquid Scintillation Counting (LSC)

TRITIUM DESORPTION ANALYSIS

DE LA RECHERCHE À L'INDUSTR

TRITIUM RETENTION IN PRISTINE SAMPLES

- > Pristine W: T inventory is mainly linked with HTO desorption
- Grain boundaries and existing defects in ITER grade W are additional traps for T retention compared to monocristalline W
 - Initial W structure plays a major role in retention studies
- > More pristine W structures need to be studied

IRRADIATION IN PSI-2: IMPACT ON T LOADING

Fluence

PAGE 22

PARAMETRIC STUDY: IMPACT OF HE FLUX

• He flux **→** Thinner surface layer impacted

• He flux *¬* → T trapping sites *¬*

Less traps when He flux *∧*, i.e. exposure time *⊾* : diffusional process?

PARAMETRIC STUDY: IMPACT OF HE FLUENCE

- He fluence → Free volumes of defects >
 and defects located deeper
- He fluence ↗ →T trapping sites ↗

Traps and defects increase with the incident He fluence

٠

PARAMETRIC STUDY: IMPACT OF TEMPERATURE

- T° **↗ →** Deeper annihilation peak
 - T°
 → above 773 K → Free volumes get larger than monovacancy reference: m/n<1

Temperature is a crucial parameter: vacancy mobility > 773 K ?

 $T^{\circ} \nearrow \rightarrow T$ trapping sites \nearrow

CONCLUSION AND PERSPECTIVES

CONCLUSIONS

- Significance of in situ exposures experiment at high temperatures
 - Complementary to laboratory studies
- Cross-sectional TEM observation:
 - Heavily damaged layer formed at the surface, whose thickness increases with temperature.
 - Bubbles are distributed deep in W well beyond He implantation range (<15 nm) at any temperature range.
 - > Helium accumulation supports bubble nucleation, without vacancy.
 - Coalescence of bubbles (larger and sparser) as temperature increases.
 - > Vacancy enhances the growth of bubbles.
 - > Nano-bubbles characteristics in agreement with GISACS experiments
- Hydrogen retention in W
 - Increase of D/T retention in defect-rich materials:
 - o non annealed W
 - He-irradiated W
 - oIncrease of T trapping when He fluence increases

oIncrease of T trapping when He flux increases Diffusion-like process

•W coated materials: both surface and bulk materials impact the retention.

• Extend samples panel:

- Focus on surface impact: native oxides, rugosity (PhD)
- W « WEST-like »
- Deposited materials: W-W, Si-W (Polimi), CFC-W (JET)

•Extend irradiation ranges:

- He ion irradiation in CAMITER (PIIM, AMU)
- New campaigns at PSI-2 (FZJ)

PERSPECTIVES

- Extend irradiation range: fluence, impurities,
 He+D plasmas...
- WEST: exposure to CX He during C4 (2018)
- •Extend the hydrogen retention study:
 - > D ion irradiation and TDP: CAMITER
 - > D gas loading surface analyses (Raman, EDX...)
 - > T/D/H gas loading: penning jauge under way at Saclay Tritium Lab

THANK YOU FOR YOUR ATTENTION

Commissariat à l'énergie atomique et aux énergies alternativesDRVCentre de Cadarache | 13108 Saint Paul Lez Durance CedexIRFMT. +33 (0)4 42 25 65 44 | F. +33 (0)4 42 25 49 90SI2P

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019