2<sup>nd</sup> Research Coordination Meeting (RCM) of the Coordinated Research Project (CRP) on 'Plasma-Wall Interaction with Irradiated Tungsten and Tungsten Alloys in Fusion Devices"

Status update on MERCOR-TMAP integration, Tritium Plasma Experiment Modification, and PHENIX program for PMI in irradiated tungsten







www.inl.gov

Masashi Shimada, Chase N. Taylor, and Brad J. Merrill

Fusion Safety Program, Idaho National Laboratory

STI #: INL/MIS-15-XXXXXX | Seoul, Korea | 9/9/2015







## Outline

- 1. Motivation for this CRP
- 2. Progress since 1<sup>st</sup> RCM
  - Defect annealing of neutron-induced damage in tungsten
  - High energy (2 keV) D ion effects on D retention
- 3. Status update on:
  - HFIR neutron-irradiated tungsten under PHENIX program
  - TMAP-MERCOR integration
  - Tritium Plasma Experiment (TPE) modification
  - Other supporting experiment for this CRP

#### Motivation:

# Combined/Synergistic effects in Burning Plasma Long Pulse PMI

**PMI** > 10<sup>23</sup> m<sup>-2</sup>s<sup>-1</sup>, > 10 MWm<sup>-2</sup>

- Erosion & re-deposition
- High heat flux (steady state & transient)
- Surface morphology (tungsten fuzz, H/<sup>4</sup>He bubble) etc...

K

## **Burning Plasma PMI**

#### neutron >> 1 dpa

- Radiation damage
- Solid transmutation (e.g. Re, Os in W)
- Gas production (H/4He)
- Thermal conductivity degradation
   embrittlement

etc...



- Tritium behavior (permeation & retention)
- Tritium decay <sup>3</sup>He effect
- Beta-induced effect etc...

M.Shimada | IAEA 2nd RCM CRP on irradiated tungsgten | Seoul, Korea | September 9, 2015

#### Motivation:



Tritium retention in ITER D/T, DEMO, future fusion reactor





## **INL's planed research for this CRP (F43021)**

- <u>Title</u>: "Tritium behavior in neutron-irradiated tungsten using TPE divertor plasma simulator and TMAP mass transport code"
- <u>Objectives</u>: to investigate tritium behavior (retention as well as gas-driven and plasma-driven permeation) in neutron-irradiated tungsten utilizing unique capabilities of the INL:
  - Tritium Plasma Experiment (TPE) divertor plasma simulator
  - Tritium Migration Analysis Program (TMAP) mass transport code
  - HFIR neutron irradiated tungsten specimens
    - Under US-Japan PHENIX collaboration, large number (>100) of tungsten specimens (e.g. single crystal W, ITER grade W, W/Re alloy) will be irradiated with neutrons at high temperature (500, 800, and 1200 °C) up to 1.5 dpa at High Flux Isotope Reactor (HFIR) with thermal neutron shielding to better represent the fusion neutron energy spectrum.

#### History of HFIR irradiation in tungsten:



### Tritium retention in HFIR neutron-irradiated tungsten

#### ✓ US-Japan TITAN program (2007-2013):

- Low-temperature (<100 °C) low-dose (0.025 & 0.3 dpa) HFIR neutron-irradiated tungsten</li>
- Tritium was trapped in bulk (>10  $\mu$ m), and retention increases at high temp. (500 °C)
- Measurement of microstructural evolution and characterization of radiation defects and defect annealing before/after plasma exposure is required to reveal trapping mechanism.

#### ✓ US-Japan PHENIX program (2013-2018):

- High-temperature (500, 800, & 1200°C) medium-dose (0.3 &1.5 dpa) HFIR neutronirradiated tungsten RB\* irradiation with Gd thermal neutron shield
- Positron annihilation spectroscopy (PAS) at ORNL and INL will characterize radiation defects and before/after plasma exposure to reveal defect annealing mechanism.
- Nuclear reaction analysis, thermal desorption spectroscopy, and PAS is used to determine tritium migration depth and trap density for tritium retention assessment.





## Outline

- 1. Motivation for this CRP
- 2. Progress since 1<sup>st</sup> RCM
  - Defect annealing of neutron-induced damage in tungsten
  - High energy (2 keV) D ion effects on D retention

#### 3. Status update on:

- HFIR neutron-irradiated tungsten under PHENIX program
- TMAP-MERCOR integration
- Tritium Plasma Experiment (TPE) modification
- Other supporting experiment for this CRP



## Defect annealing of neutron-induced damage in tungsten

- Question: Ref: M. Shimada et.al., Journal of Nuclear Materials 463 (2015) 1005–1008
  - Can we anneal the neutron-induced damage in tungsten at 900 °C?
- Methodology in this research/paper:
  - HFIR neutron-irradiated tungsten (0.025 dpa @ 70-80 °C irradiation)
  - Repeated D plasma exposure and TDS (up to 900 °C) for 4 times
  - Measure changes in TDS spectra
  - Model with TMAP for changes in trap concentration

#### Plasma exposure conditions:

|              | Weight<br>[gram] | Sample size <sup>c</sup>          | HFIR                         | TPE                             | Ion fluence <sup>d</sup> [m <sup>-2</sup> ] |                     |                      |                     |
|--------------|------------------|-----------------------------------|------------------------------|---------------------------------|---------------------------------------------|---------------------|----------------------|---------------------|
| Sample<br>ID |                  | (diameter /<br>thickness)<br>[mm] | irradiation<br>dose<br>[dpa] | exposure<br>temperature<br>[°C] | 1 <sup>st</sup> TDS                         | 2 <sup>nd</sup> TDS | 3 <sup>rd</sup> TDS  | 4 <sup>th</sup> TDS |
| Y102         | 0.80             | 6.0 / 0.15                        | 0.025                        | 100                             | 1.0E+26                                     | 1.0E+26             | $6.3E + 25^{f}$      | $4.2E+25^{f}$       |
| Y103         | 0.89             | 6.0 / 0.16                        | 0.025                        | 200                             | 9.7E+25                                     | 1.0E+26             | 1.0E+26              | 9.8E+25             |
| Y105         | 0.83             | 6.0 / 0.15                        | 0.025                        | 500                             | 1.2E+26                                     | 1.0E+26             | 6.1E+25 <sup>f</sup> | 9.8E+25             |

Thermal desorption spectroscopy condition: 10 °C/min up to 900 °C

## Defect annealing of neutron-induced damage in tungsten

- Thermal desorption spectra of 500 °C exposure sample
  - Reduction in TDS peak as each annealing at 900 °C for 0.5 h
  - Lowered TDS peak from 800 °C to 600 °C in after 1<sup>st</sup> anneal



daho National Laboratory

## Idaho National Laboratory

## Defect annealing of neutron-induced damage in tungsten

- Deuterium retention of 500 °C exposure sample (red line)
  - Reduction in total deuterium retention with annealing at 900 °C for 0.5 h
  - TMAP modeling also support reduction in trap concentration with annealing at 900 °C for 0.5 h

#### **Experimental result of TDS**

**Modeling result of TDS** 





## Defect annealing of neutron-induced damage in tungsten

- Conclusion from this research:
  - Deuterium retention decreases approximately 70% for at 500 °C after each annealing at 900 °C for 0.5 h
  - TMAP modeling revealed the trap concentration decreases approximately 80% after each annealing at 900 °C for 0.5 h.
  - The neutron-induced radiation damage were NOT annealed out completely even after the 3rd annealing.
- Concern for this CRP
  - This is results from D exposure results (not He/D/T results)
  - Existing of <sup>4</sup>He in near-surface radiation-damage site probably make it more difficult to anneal radiation damages
  - Existing of tritium decay <sup>3</sup>He in bulk radiation-damage site also make it more difficult to anneal radiation damages
- Concern for high wall temperature operation (>500 °C) of DEMO
  - Diffusion of tritium increases whereas annealing effect may not take place until very high temperature (1000 °C)
  - Tritium retention might be high in high wall temperature operation

# Idaho National Laboratory

## High-energy (2.0 keV) D ion effects on D retention

Question:

Presented by C.N. Taylor at PFMC-15

- Can high-energy (2.0 keV) D ion create radiation-damage in tungsten ?
- To what energy range (0.5-10.0 keV) can we use our ion beam for D retention study?
- Methodology in this research/paper:
  - Annealed at 900°C for 0.5 h prior to ion beam exposure
  - Expose to two different energy (0.3 keV vs. 2.0 keV) below or above damage production threshold energy of 933 eV/D at RT (20 °C)
  - Measure changes in TDS spectra
- Ion beam exposure conditions:

| Sample   | Beam                                  | lon energy<br>(eV/D) | Temp.<br>(°C) | Flux<br>(D/m²s)      | Fluence<br>(D/m²)    |
|----------|---------------------------------------|----------------------|---------------|----------------------|----------------------|
| WF15_001 | D <sub>3</sub> +: 900 eV              | 300                  | RT            | 2 x 10 <sup>18</sup> | 1 x 10 <sup>21</sup> |
| WF15_002 | D <sub>3</sub> +: 900 eV              | 300                  | RT            | 2 x 10 <sup>18</sup> | 1 x 10 <sup>22</sup> |
| WF15_003 | D <sub>3</sub> <sup>+</sup> : 900 eV  | 300                  | RT            | 2 x 10 <sup>18</sup> | 1 x 10 <sup>23</sup> |
| WF15_004 | D <sub>3</sub> +: 6000 eV             | 2000                 | RT            | 2 x 10 <sup>19</sup> | 1 x 10 <sup>21</sup> |
| WF15_005 | D <sub>3</sub> <sup>+</sup> : 6000 eV | 2000                 | RT            | 2 x 10 <sup>19</sup> | 1 x 10 <sup>22</sup> |
| WF15_006 | D <sub>3</sub> <sup>+</sup> : 6000 eV | 2000                 | RT            | 2 x 10 <sup>19</sup> | 1 x 10 <sup>23</sup> |

Thermal desorption spectroscopy condition: 30 °C/min up to 900 °C



## **Optical microscopy observation**

- **Observations** 
  - Large blisters (> 5μm) were observed in all samples except for low fluence & low energy
  - Larger blisters (up to 20 µm) at 2000 eV.
  - More blisters at higher fluence.
  - Blister of 300 eV are elastic deformation
- Conclusions
  - Blister formation mechanism is not due to displacements.
  - Blister formation is due to pressure induced stress from gas precipitation.
  - But displacements can help create larger blister formation.
  - Small (< 5 µm and not visible with optical microscope)blister exists in <111> grain [1]
- Future work
  - SEM, TEM measurements

Ref: R.D. Kolasinski, M.Shimada et.al. JAP 2015 M.Shimada | IAEA 2nd RCM CRP on irradiated tungsgten | Seoul, Korea |





## Deuterium desorption from 0.3 and 2.0 keV D ion exposure

- Desorption conditions
  - Ramp rate of 0.5°C/sec to 900°C
- Observations
  - The primary desorption peak (< 100°C) is very high and is deuterium trapped in dislocation type trapping site due to low detrapping energy.
  - Similar to the peak observed in unannealed W by R.A. Anderl (Anderl et.al. JNM2001)
  - Desorption from blisters may be playing small role at low energy exposure (300 eV).
  - As the fluence increases, the primary desorption peak becomes wider, creating more dislocation type trapping site.
  - Displacement with 2000 eV beam creates additional trapping site around 200° C
  - Desorption from blister (peak around 200 °C) still play minor role in high fluence, high energy case.



## Deuterium desorption from 0.3 and 2.0 keV D ion exposure



- Observations
  - Similar retained D fluence (fractional retention up to 0.4 %) with Haasz (Haasz et.al. JNM 97), but different TDS spectrum.
    - The primary desorption peak (< 100°C) is attributed to deuterium trapped in dislocation type trapping site in our results due to low detrapping energy.
  - Displacement with 2000 eV beam increase the D retention by a factor of 4 at low fluence (fractional retention up to 2.0 %)
  - D retention in the low temperature peak starts to saturate at high fluence  $(10^{23} \text{ m}^{-2})$ 
    - Now fractional retention decreased to 0.1 %.
- Conclusions/future work:
  - High energy (2000 eV/D) beam does enhances D retention for low fluence, so low energy beam (< 933 eV/D) should be used for low fluence study.</li>
  - Change annealing temperature or exposure temperature to eliminate/minimize the low desorption peak (< 100°C), and with SEM, TEM, PAS measurement</li>

daho National Laboratory



## Outline

- 1. Motivation for this CRP
- 2. Progress since 1<sup>st</sup> RCM
  - Defect annealing and thermal desorption of deuterium in HFIR neutronirradiated tungsten
  - High energy (2 keV) D ion effects on D retention
- 3. Status update on:
  - HFIR neutron-irradiated tungsten under PHENIX program
  - TMAP-MERCOR integration
  - Tritium Plasma Experiment (TPE) modification
  - Other supporting experiment for this CRP

#### Status update on: HFIR neutron-irradiation under PHENIX (April 2013 – March 2019)

- Capsule design completed in June 2015
- Capsule irradiation planed from February 2016 to April 2017 (6 cycle irradiation)
  - Position: Removable Beryllium\* (RB\*) irradiation port at HFIR
  - Dose: 1.0 ~ 1.5 dpa
  - *Temperature:* 500, 800, and 1200 °C
  - Uniqueness: with Gd thermal neutron shielding
- Removal from HFIR and disassembly at hot cell around July 2017
- PIE from August 2017 March 2019





## Capsule design and specimen matrix in PHENIX

RB19J capsule design

D10TQ OTY 15

TY 82

- Cost sharing with JAEA-ORNL F82H irradiation program (300 °C zone)
- 500, 800, 1200 °C temperature zone for PHENIX tungsten irradiation
- Specimen matrix for PHENIX Task 3: "Tritium behavior in irradiated tungsten"
  - : 6 mm OD, 0.25mm thick discs  $: \sim x10$  each temp. zone D6TQ – D6TH : 6 mm OD, 0.5 mm thick discs (standard) :  $\sim$  x80 each temp. zone – D6T1 : 6 mm OD, 1.0 mm thick discs : ~ x10 each temp. zone – D10TQ : 10 mm OD, 0.25 mm thick discs : ~ x15 each temp. zone – D10TH : 10 mm OD, 0.5 mm thick discs : ~ x10 each temp. zone 800C Zone **Capsule Design Layout** 6SQ5D OTY 6 NT2 QTY 29 Lavout DETO QTY 22 TEM **OTY 12** 500C 100MM 1200C 105MM D6T1 D6TH QTY 35 All R...ences D10T1 OTY QTY 10 D6TH D10TH

CAK RIDGE

JAEA

800C



## **PIE plans in PHENIX Task 3: "Tritium behavior in irradiated tungsten"**

#### (x10)D6TQ, (x10)D6TH, (x10)D6T1

- Thickness dependence on retention (i.e. long time TPE exposure)
- Thickness dependence on gas-driven permeation

### • (x15)D10TQ, (x10)D10TH

- Thickness dependence in plasma-driven permeation

### • (x70)D6TH

- Temperature (500-1200 °C), ion flux (1e22-1e23 m<sup>-2</sup>s<sup>-1</sup>), ion fluence (1e26-1e28 m<sup>-2</sup>) dependence on retention
- He effect (He, D, T) on retention
- Deuterium gas exposure (500-950 °C, < 1e6 Pa) for trap mechanism

NOTE: Actual test matrix will be determined based on the number of intact HFIR irradiated samples after its shipment to INL.



## **PIE plans in PHENIX Task 3: "Tritium behavior in irradiated tungsten"**

- 1) PIE at ORNL
  - Positron Annihilation Spectroscopy (PAS) coincidence lifetime measurement for defect characterization (sharing data from Task 2)
  - Transmission Electron Spectroscopy (TEM) for defect characterization (sharing data from Task 2)
- 2) PIE at INL
  - PAS Doppler broadening measurement for defect characterization prior to and post plasma exposure and TDS
  - Plasma (and/or ion) exposure with TPE (and/or) NIMIIX
  - Gas-driven tritium permeation with TGAP
  - Thermal desorption spectroscopy (TDS)
  - Deuterium gas exposure with SGAS
- 3) Nuclear reaction analysis (NRA) at U. Wisconsin-Madison or SNL-MN
- 4) Supporting PIE at JA Oarai Center

#### Status update on: Recent development in TMAP from TMAP4

- Multiple trap model (TMAP4 modified version)
  - Ref: Brad J. Merrill, M. Shimada, P.W. Humrickhouse, *J. Plasma Fusion Res Series* **10** (2013) 71
  - Fit with:
    - 1 trap density of 0.35 at.%
    - 6 detrapping energy (0.9, 1.0, 1.1, 1.2, 1.4, and 1.6 eV)

J. Plasma Fusion Res. SERIES, Vol. 10 (2013)

#### Simulating Tritium Retention in Tungsten with a Multiple Trap Model in the TMAP Code

<sup>a</sup>Brad J. Merrill, Masashi Shimada, Paul W. Humrickhouse

Fusion Safety Program, Idaho National Laboratory, Idaho Falls, ID, USA 83402

(Received: 10 May 2012 / Accepted: 1 September 2012)

Accurately predicting the quantity of tritium retained in plasma facing components is a key safety issue for licensing future fusion power reactors. Retention of tritium in the lattice damage caused when high energy neutrons collide with atoms in the structural material of the reactor's plasma facing components (PFCs) is an area of ongoing experimental research at the Idaho National Laboratory (INL) under the US/Japan TITAN collaboration. Recent experiments with the Tritium Plasma Experiment (TPE), located in the INL's Safety and Tritium Applied Research (STAR) facility, demonstrate that this damage can only be simulated by computer codes like the Tritium Migration Analysis Program (TMAP) if one assumes that the lattice damage produced by these neutrons results in multiple types of hydrogen traps (energy wells) within the material, each possessing a different trap energy and density. Previous attempts to simulate the quantity of deuterium released from neutron irradiated TPE tungsten targets indicated that at least six different traps are required by TMAP to model this release. In this paper we describe a recent extension of the TMAP trap site model to include as many traps as required by the user to simulate retention of tritium in neutron damaged tungsten. This model has been applied to data obtained for tungsten irradiated to a damage level of 0.025 dpa in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) after exposure to a plasma in TPE.



daho National Laboratory

**Fig.** 4. Comparison of TMAP simulation with multiple traps and the TDS spectrum for neutron irradiated tungsten exposed to a TPE plasma at 200°C.

## Status update on: TMAP integration into MERCOR safety code

#### MELCOR

A fully integrated, engineering level thermal-hydraulics computer code that is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission, and models the progression of accidents in fission reactor (e.g. BWR, PWR, and advanced reactor concept)

#### MELCOR for Fusion

- Modified by INL FSP to model the progression of accidents in fusion power plants, including a spectrum of accident phenomena such as reactor cooling system and containment fluid flow, heat transfer, and aerosol/dust transport
- Used in ITER's NSSR 1&2, GSSR, RPrS (after being pedigreed and placed in INL Software QA system as a QL1 safety code), US DCLL TBM, reactor design studies APEX (Li and FLiBe), ARIES AT/SC/ACT, LIFE, and the JA and EU DEMOs.
- Tritium Migration Analysis Program TMAP
  - A tritium migration code that treats multi-specie surface absorption and diffusion in composite materials with dislocation traps, plus the movement of these species from room to room by air flow within a given facility
  - Used in safety analyses for ITER, US DCLL TBM, reactor design studies APEX (Li and FLiBe), ARIES AT/SC

daho National Laboratory



#### Status update on: TMAP integration into MERCOR safety code

- TMAP integration into MERCOR 1.8.6
  - The natural development path for both of these codes (MERCOR and TMAP) is to merge their capabilities into one computer code to provide a more comprehensive safety tool for analyzing accidents in fusion reactors.
  - A new version of MELCOR for fusion is under development based on the last F77 MELCOR 1.8.6 (released in 2009) that combines the capabilities of MELCOR for ITER (1.8.2) and MELCOR Multiple Fluids (1.8.5).
  - This version was chosen because of its double precision accuracy and ease of source modification compared to MELCOR 2.x (F95 is under SNL-NM configuration control).
  - TMAP is being imported into this MELCOR code version in order to produce a more self-consistent safety accident analysis capability (also an update for the TMAP code, making it more advanced than user requested TMAP7), and will be presented in on-coming ISFNT-12
  - In the near term, the development and validation of this version of MELCOR for fusion will continue at INL. When released, the user of this code will have a comprehensive tool for analyzing accidents in fusion reactors.

## Tritium Plasma Experiment - TPE





#### Unique capabilities

- TPE is at Safety and Tritium Applied Research (STAR) facility, LTHC 3 nuclear facility.
- •TPE is contained within double enclosure (PermaCon Box and Glovebox)
- •TPE is unique in that it combines four specialized elements:
  - (a) the ability to handle tritium (max. T inventory: < 1.5g in STAR)
  - (b) a divertor-relevant high-flux plasma (max. ion flux: 4.0x10<sup>22</sup> m<sup>-2</sup>s<sup>-1</sup>)
  - (c) the ability to handle radioactive materials (STAR limit: < 100 mR/hr = 10  $\mu$ Sv/hr)
  - (d) the ability to handle beryllium



#### **Comparison of plasma parameters among** Existing and proposed US Linear Plasma Devices

|                                                                   | PISCES-B (UCSD)                                                        | TPE (INL)                                                    | MPEX (ORNL)                                                                                 |
|-------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Deuterium ion flux: $\Gamma_i$ (m <sup>-2</sup> s <sup>-1</sup> ) | $10^{21} - 10^{23}$                                                    | $10^{20} - 3.7 \times 10^{22}$                               | >10 <sup>23</sup>                                                                           |
| Incident ion energy: E <sub>i</sub> (eV)                          | 20–300 (bias)                                                          | 50–200 (bias)                                                | ??                                                                                          |
| Electron temperature: T <sub>e</sub> (eV)                         | 4 - 40                                                                 | 5-20                                                         | 3-50                                                                                        |
| Ion temperature: T <sub>i</sub> (eV)                              | 2 – 5                                                                  | 2 - 5                                                        | 1 - 200                                                                                     |
| Electron density: n <sub>e</sub> (m <sup>-3</sup> )               | 10 <sup>18</sup> -10 <sup>19</sup>                                     | $10^{16} - 3.5 \times 10^{18}$                               | 10 <sup>18</sup> -3x10 <sup>19</sup>                                                        |
| Max. heat flux: P <sub>max</sub> (MW/m <sup>2</sup> )             | 5                                                                      | ~1.2                                                         | 20                                                                                          |
| Plasma diameter (mm)                                              | 75                                                                     | 50                                                           | 120                                                                                         |
| Max. specimen size                                                | $\phi \sim 25.4 \text{ mm disc}$                                       | $\phi \sim 50.8 \text{ mm disc}$                             | 100 x 100 mm plate                                                                          |
| Pulse length (s)                                                  | Steady state                                                           | Steady state                                                 | Pulse and Steady state                                                                      |
| Activated targets                                                 | No                                                                     | Yes                                                          | Yes                                                                                         |
| Tritium                                                           | No                                                                     | Yes                                                          | No                                                                                          |
| Beryllium                                                         | Yes                                                                    | Yes/No*                                                      | Yes                                                                                         |
| Permeation capability                                             | No                                                                     | Yes**                                                        | No                                                                                          |
| Ion incident angle                                                | Normal                                                                 | Normal***                                                    | Inclined and Normal                                                                         |
| Plasma source (cathode)                                           | Reflex arc (LaB <sub>6</sub> )                                         | Reflex arc (LaB <sub>6</sub> )                               | Helicon (no cathode)                                                                        |
| Year of operation                                                 | Since 1988                                                             | Since 1989                                                   | Proposed phase                                                                              |
| Unique capabilities                                               | In-situ surface analysis, transient surface heating, beryllium testing | Tritium use and diagnostics,<br>neutron irradiated materials | Electrodeless plasma<br>(Helicon + ECH + ICH) minimizes<br>plasma contamination by impurity |

NOTES:

\*: Beryllium has been extensively tested in TPE during it tenure at TSTA, LANL in 90's, but it has not been actively tested in INL.

\*\*: Tritium plasma-driven permeation capability is under development with the SNL/CA collaboration

\*\*\*: Incident angle can be varied upon target holder design, and the current target holder is designed for normal incidence only.

M.Shimada | IAEA 2nd RCM CRP on irradiated tungsgten | Seoul, Korea | September 9, 2015

#### Status update on: TPE modification (electrical system upgrade)

- Background and Safety issue in operation with previous TPE configuration
  - Heat issue (up to 95-100 F for tritium operation) in contamination area (CA)
  - No space to put chair and desk in the current control room (inside Permacon)
  - Exposure to tritium and beryllium
  - Existing/old power supply unable to remote control and setup safety features
- Decision was made in 2013 to setup new power supplies and control room outside of Permacon in order to eliminate the above four safety issues.



Current power supply location and control room (inside Permacon)



New power supply location and control room (outside Permacon)

daho National Laboratory

## Status update on: TPE modification (electrical system upgrade)

#### Completed tasks:

- Installation of electrical breakers, disconnects, AC supply lines completed in July 2014
- Installation of DC cables (total length: 1000 ft ~ 300m) in Permacon (contamination area) completed in September 2014

Idaho National Laboratory

- Installation of new cooling manifold inside TPE's Ventilated Enclosure (high contamination area) completed in December 2014
- Revision of the Work Control Document has been approved in February 2015
- Establishment of new radiological work permit (RWP) for whole body entry into Ventilated Enclosure (high contamination area) in February 2015





#### Status update on: TPE modification (electrical system upgrade)

- Completed tasks:
  - Removal of old cooling lines, and installation of new cooling lines/flow meters and pressure gauges inside Permacon (outside Ventilated Enclosure)
- On-going activities:
  - Installation of data acquisition system and safety interlock is underway
  - Installation of new DC cables, cooling lines, pressure gauges, and thermocouples inside Ventilated Enclosure (High Contamination Area) is underway
  - Installation of uninterrupted power supplies (UPS) as standby power for loss of electricity during full power plasma operation
  - First plasma after TPE modification is expected in September/October 2015.





## Status of supporting experiment at STAR for this CRP

- Neutron Irradiated Materials Ion Implantation eXperiment NIMIX

   To investigate PMI on low flux/fluence condition
- Tritium Gas Absorption Permeation TGAP
  - To investigate gas-driven tritium permeation on irradiated tungsten
- Static Gas Absorption System SGAS
  - To investigate deuterium trapping in irradiated tungsten
- Thermal Desorption Spectroscopy TDS
  - To measure total D and He retention in irradiated tungsten up to 1100 °C
- Doppler Broadening Positron Annihilation Spectroscopy DB-PAS
  - To qualitatively characterize radiation defect in irradiated tungsten



### **Neutron Irradiated Material Ion Implantation eXperiment**

- NIMIX is located in non-tritium side at the STAR
  - Base pressure: low 10<sup>-8</sup> torr
  - Capable of handling neutron irradiated materials
  - Ion is created in duoplasmatron ion source
  - Mass analyzed beam
  - Flux: 1x10<sup>19</sup> m<sup>-2</sup>s<sup>-1</sup>
  - Species: D, He





## TGAP: Tritium permeation in irradiated tungsten

Test section for NFRI ARAA





#### Test section for PHENIX W



#### Unique capabilities

- Designed to measure tritium transport properties (e.g. diffusivity, solubility, and permeability) in activated materials at realistic fusion sweep gas conditions (e.g. low tritium <10 Pa & hydrogen partial pressures < 1000 Pa, moderate < 700 C)</li>
- Capable of testing liquid or ceramic breeder materials (e.g. PbLi, Li<sub>2</sub>TiO<sub>3</sub>, etc.) and disc shaped metal specimens (W, RAFM steels, etc.)

# SGAS:



## Deuterium trapping/absorption in irradiated tungsten

- This experimental apparatus studies deuterium gas absorption in materials. It is located inside Laboratory fume hood (STAR RM 103)
- <u>Unique capabilities</u>
  - Sub atmospheric absorption (< 0.1 MPa) up to 950 C
  - Utilize three calibrated capacitance manometers (0.002, 1.3, 133 kPa)
  - Capable of testing liquid or ceramic breeder materials (e.g. PbLi, Li<sub>2</sub>ZrO<sub>3</sub>, KO functional materials etc.) and PFC/structural material (W, RAFM steels, etc.)
  - Capable of testing neutron-irradiated materials







## Thermal desorption spectroscopy (TDS)

- Both TPE and NIMIIX study retention.
- To investigate retention,

$$R = \frac{\Phi_{out}}{\Phi_{in}}$$

- Heat samples up to 1100°C
  - Vacuum infrared tube furnace
  - Linear ramp rate
  - 6 calibrated leaks (x3 He and x3 D2)
- Analyze residual gases
  - Two quadrupole mass spectrometers
  - High resolution QMS can distinguish:
    - D2: 4.0282 amu
    - He: 4.0026 amu



Scan 433 [3/26/2014 15:59:07]

203



## **Doppler Broadening Positron Annihilation Spectroscopy**

- Positron annihilation spectroscopy
  - *Diagnostic* to assess relative defect concentration.
  - Correlate with TDS data.
- First PAS measurements at STAR: April 2015
  - Commissioned LN2 auto fill system.
  - Zero dose measured on dosimetry rings.
  - Problems with detector. Returned to IRC.
     Found incorrect vent plug. Testing Will return to STAR in July.
- Future collaboration with Brian Wirth (UTK) and ORNL.





## Summary of INL activities for this CRP

- TPE will be restarted with electrical system next month
  - This enable safer plasma operation and achieve much higher ion flux density (> 10<sup>23</sup> m<sup>-2</sup>s<sup>-1</sup>), will be ready for new (> 100) neutron-irradiated tungsten specimens
- PHENIX will start HFIR neutron-irradiation to W from Feb.2016 to April 2017
  - This irradiation will provide large number (> 100) of one-of-a-kind neutron-irradiated tungsten specimen
  - Plasma-driven D retention in neutron-irradiated tungsten will be investigated with TPE, NIMIX
  - Gas-driven D retention in neutron-irradiated tungsten will be investigated with SGAS
  - Plasma-driven T permeation in neutron-irradiated tungsten will be investigated with TPE
  - Gas-driven T permeation in neutron-irradiated tungsten will be investigated with TGAP
- By the 3<sup>rd</sup> RCM (spring 2017), we should have some preliminary results from these new PHENIX specmens



## **Supporting slides**



## **Critical remaining issues:**

- 1. Radiation damage recovery temperature
  - Recovery temperature
  - Activation of defect migration
  - Defect characteristic etc.
- 2. Trapping mechanism(s) of tritium in radiation damage
  - Maximum trap concentration,
  - Trap concentration profile throughout material (on the order of mm),
  - De-trapping energy of tritium from trap site
  - Need to distinguish radiation damage from transmutation effects etc.
- Diffusion mechanism(s) of tritium to <u>bulk (>10 µm) tungsten under ITER/</u> DEMO divertor relevant condition
  - High ion flux (>10<sup>22</sup> m<sup>-2</sup>s<sup>-1</sup>)
  - Mixed (He, D, and T) plasma
  - High temperature (>500 C)
- 4. Mitigation of deep diffusion of tritium to bulk (>10 μm) tungsten
- 5. Removal of tritium from <u>bulk (>10 µm) tungsten</u>

NOTE:

Neutron-irradiation is the best (and only) option to create high dose (> 1 dpa) radiation damage in bulk (>10 µm) W



#### Enhanced diffusion to simulate plasma implantation



- TMAP does not treat plasma surface physics (e.g. erosion, sputtering and deposition).
- TMAP can simulate the ion implantation with ion implantation profile
- Venhaus and Causey<sup>1,2</sup> artificially increased hydrogen diffusivity in the Enhanced Diffusion Zone (EDZ) (<10 nm) during plasma implantation in order to reduce the mobile concentration and retention at low temperature in tungsten.
  - During plasma implantation:
    - Enhanced diffusivity  $(D_{diff}^{EDZ})$  of  $(0.5-2.0)x10^{-9} m^2/s^1$  matches the experiment well.
  - During thermal desorption:
    - Diffusivity (D<sub>diff</sub>) by Fraundelder<sup>4</sup>

References:

- <sup>1</sup> R.A. Causey, et. al. J. Nucl. Mater. 266 (1999) 467.
- <sup>2</sup> T. Venhaus and R.A. Causey, J. Nucl. Mater. 290 (2001) 505.
- <sup>3</sup> T. Venhaus and R.A. Causey, Fus. Technol. 39 (2001) 868.
- <sup>4</sup> R. Frauenfelder, Vac. Sci. Tech.,6 (1969) 338.