

| Issues                                                                                                                        | IPP |
|-------------------------------------------------------------------------------------------------------------------------------|-----|
| H retention in damaged W                                                                                                      |     |
| <ul> <li>Additional damaging (e.g. neutron damage or high<br/>energy ion implantation) strongly enhances H retenti</li> </ul> | on  |
| <ul> <li>n damage simulated in lab experiments by self ion<br/>implantation (20 MeV W, no chemical effects)</li> </ul>        |     |
| H retention in damaged W                                                                                                      |     |
| <ul> <li>Dependence on type of ion, damage rate, damage<br/>temperature</li> </ul>                                            |     |
| <ul> <li>Nature of trap sites (vacancies, dislocation loops,<br/>nano-voids, voids,) and analysis of damage</li> </ul>        |     |
|                                                                                                                               |     |
| IAEA RCM on Irradiated Tungsten, Seoul © W. Jacob, September 2015 2                                                           |     |



















































| ition density values | of W samples calc | ulated for near surf       | ace and intermedia       | te regions               |  |
|----------------------|-------------------|----------------------------|--------------------------|--------------------------|--|
|                      |                   |                            |                          | -                        |  |
|                      |                   |                            |                          |                          |  |
|                      |                   |                            |                          |                          |  |
| Sample               | Region            | Total                      | Radiation-               | Radiation-               |  |
|                      |                   | dislocation                | induced                  | induced                  |  |
|                      |                   | density [m <sup>-2</sup> ] | dislocation              | dislocation              |  |
|                      |                   |                            | lines [m <sup>-2</sup> ] | loops [m <sup>-2</sup> ] |  |
| A0 780A              | Near surface      | 4.6*10 <sup>14</sup>       | 1.9*10 <sup>14</sup>     | 2.7*10 <sup>14</sup>     |  |
|                      | Intermediate      | 5.0*10 <sup>14</sup>       | 2.0*10 <sup>14</sup>     | 3.0*10 <sup>14</sup>     |  |
| A0 781A              | Near surface      | 2.3*10 <sup>14</sup>       | 1.2*10 <sup>14</sup>     | 1.1*10 <sup>14</sup>     |  |
|                      | Intermediate      | 3.8*10 <sup>14</sup>       | 1.9*10 <sup>14</sup>     | 2.0*10 <sup>14</sup>     |  |
| A0 782A              | Near surface      | 2.4*10 <sup>14</sup>       | 9.9*10 <sup>13</sup>     | 1.4*10 <sup>14</sup>     |  |
|                      | Intermediate      | 2.9*10 <sup>14</sup>       | 9.4*10 <sup>13</sup>     | 2.0*10 <sup>14</sup>     |  |
| A0 783A              | Near surface      | 2.5*10 <sup>14</sup>       | 1.6*10 <sup>14</sup>     | 9.9*10 <sup>13</sup>     |  |
|                      | Intermediate      | 2.5*10 <sup>14</sup>       | 1.4*10 <sup>14</sup>     | 1.2*10 <sup>14</sup>     |  |
| A0 785A              | Near surface      | 1.9*10 <sup>14</sup>       | 1.3*10 <sup>14</sup>     | 6.0*10 <sup>13</sup>     |  |
|                      | Intermediate      | 1.7*10 <sup>14</sup>       | 8.8*10 <sup>13</sup>     | 7.8*10 <sup>13</sup>     |  |
|                      |                   |                            |                          |                          |  |
|                      |                   |                            |                          |                          |  |
|                      |                   |                            |                          |                          |  |



| Sample                          | Irradiation                    | Dose                                      | Dpa <sub>NRT</sub> |
|---------------------------------|--------------------------------|-------------------------------------------|--------------------|
|                                 | None                           | 0                                         |                    |
|                                 | 3.5 MeV<br>e beam              | 2.6x10 <sup>18</sup><br>e/cm <sup>2</sup> |                    |
|                                 | 3.5 MeV<br>e beam              | 1.3x10 <sup>19</sup><br>e/cm <sup>2</sup> |                    |
| A1582                           | 20MeV W6+                      | 1.6x10 <sup>12</sup><br>W/cm <sup>2</sup> | 0.005              |
| A1583                           | 20MeV W6+                      | 1.6x10 <sup>14</sup><br>W/cm <sup>2</sup> | 0.5                |
| t set of posit<br>a pending for | ron lifetime spe<br>evaluation | ctra were mea                             | sured              |







| Summary                                                                                                                                                                                                                                                                                                   | IPP |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <ul> <li>e beam damaged W:</li> <li>collaboration with MEPhI started and will be continued</li> </ul>                                                                                                                                                                                                     |     |
| <ul> <li>D ion with keV energies produce substantial damage</li> <li>At 134 K D concentration up to 30%</li> <li>Warming to 290 K reduces D concentration to 10%</li> <li>Strong grain-orientation-dependent blistering</li> </ul>                                                                        |     |
| <ul> <li>Damage rate dependence</li> <li>Variation of damage rate by factor of &gt; 1000 → no significant difference</li> <li>Problem: calculation of damage by SRIM is questionable</li> </ul>                                                                                                           |     |
| <ul> <li>TEM</li> <li>Ongoing collaboration with WUT (and JSI)</li> <li>Annealing changes dislocation density</li> <li>Residual damage still visible in TEM after annealing at 1100 K</li> </ul>                                                                                                          |     |
| <ul> <li>PALS</li> <li>Collaboration with TU Munich</li> <li>First measurements taken, analysis is pending</li> </ul>                                                                                                                                                                                     |     |
| This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed hereindo not necessarily reflect those of the European Commission. |     |