DE LA RECHERCHE À L'INDUSTRIE

MODELING OF TRAPPING/DETRAPPING OF HYDROGEN ISOTOPES IN TUNGSTEN MATERIALS

WHISCI modeling TEAM (CS Becquart, R Bisson, N Fernandez, Y Ferro, <u>C. Grisolia</u>, E. Hodille, J Mougenot)

TORE SUPRA going WEST

WEST configuration

WEST Plasma Facing Components : full metallic actively cooled environment

WEST plasma scenarios

■ H1 : testing ITER PFC Long pulse 10-20 MW/m²

H3 : high fluence ITER fluence in a few days of operation

H4 : high power Shorter pulse towards hybrid scenarios

SCENARIO (3.7 T)				
Plasma current	0.8 MA	0.6 MA	0.5 MA	
Plasma density	9 10 ¹⁹ m ⁻³	6 10 ¹⁹ m ⁻³	4 10 ¹⁹ m ⁻³	
Total radiofrequency heating power	15 MW	12 MW	10 MW	
Lower Hybrid Current Drive	6 MW	6 MW	7 MW	
Ion Cyclotron Resonance Heating	9 MW	6 MW	W 3 MW	
Plasma current flat-top duration	30 s	60 s 1000 s		
Expected heat load*	10 MW/m ²	10-20 MW/m ²	10-20 MW/m ²	
Expected ELM frequency	59 Hz	76 Hz 77 Hz		
Expected ELM load	40 kJ/m ²	52 kJ/m ²	74 kJ/m ²	
Expected operation time to reach one ITER pulse particle fluence	~6 months	~2 months	~few days	

H2

lon flux: 10²² 10²³ D/s m²

H2 : long pulse H mode Pre-requisite for the programme

CRP VIENNA 2013, PROPOSED APPROACH

WHISCI – Predict and control Tritium/Deuterium trapping/degasing

 Models
 Imacroscopic

 wacroscopic
 (Rate Equations (RE))

 + Finite Element Methods (FME)
 (Resoscopic)

mesoscopic « Object Kinetic Monte Carlo (OKMC) »

microscopic « Density Functional Theory (DFT) »

Experiments

Realistic wall « ITER-WEST grade»

Semi-realistic wall « polycrystals (controlled defects)»

Model wall « single crystals(controlled defects)»

Model/Understanding

Multi-scale modeling validated by well controlled laboratory experiments

Coordinator: Regis Bisson (PIIM Laboratory)

Multi-scale modeling validated by well controlled laboratory experiments

Coordinator: Regis Bisson (PIIM Laboratory)

Multi-scale modeling validated by well controlled laboratory experiments

Strong and constant interactions in place (starting 3 years ago)

Multi-scale modeling validated by well controlled laboratory experiments

Multi-scale modeling validated by well controlled laboratory experiments

DFT: H TRAPPING IN VACANCIES

DFT results presented here are deeply detailed in:

"Hydrogen diffusion and vacancies formation in W: Density Functional Theory calculations and statistical models", N Fernandez, Y Ferro, D Kato, Acta Materialia, 94 (2015) 307

Small number of atoms (54 atoms)

Pure Single Crystal (where vacancies can be introduced)

Up to now, no surface effects (implementation in progress)

DFT: H TRAPPING IN VACANCIES

DFT: FILLING LEVEL AT ROOM TEMPERATURE

DFT results obtained at 0K

Using kinetic modeling, it can be also shown that during a Thermo-desorption experiment:

Desorption T at peak maximum

$\beta = 1Ks^2$	⁻¹ 6H	5H	4H	3H	2H	1H
E ^{des} (eV)	0.86	1.11	1.17	1.25	1.42	1.43
T _{max} (K)	311	399	420	447	507	511

Filling level at RT: VH6

DFT: VHj VACANCIES FRACTION

Perfect crystal submitted to a H flux up to H concentration: 10⁻⁵ (≅10²² D m²/s)
 → VH_i fractions at Thermo Equilibrium

Simple kinetic model:

- diffusion is neglected (0.2eV)
- the surface of the sample is neglected
- hydrogen is assumed to desorbed as released from a vacancy type VH_i
- kinetics of order one are assumed

TDS conditions:

- H implantation T=300K
- VH_i fraction from stat. model
- β=5Ks⁻¹
- 0.85 10^{13} Hz < v< 1.45 10^{13} Hz

DFT: MODELLING THERMO-DESORPTION WITH A CRUDE MODEL

Multi-scale modeling validated by well controlled laboratory experiments

Large box: 330nm of depth (see end of presentation)

Internal events: migration of the objects, emission from the objects or capture

External events: H / He implantation, neutron irradiation...

Internal events: migration of the objects, emission from the objects or capture

External events: H / He implantation, neutron irradiation...

Objects that we can encounter in the OKMC box:

- vacancies, intersitials, impurities, dislocations, grain boundaries, helium atoms, ...
- If they can form clusters, these clusters are a different object: i.e. a cluster which contains 3 vacancies and one H atom is an object.

What can we obtain ?

A description of the microstructure in terms of positions of the objects in the volume and concentration

So we can model a desorption experiment for instance

What can we obtain ?

A description of the microstructure in terms of positions of the objects in the volume and concentration

So we can model a desorption experiment for instance

For all the objects that can move, we need their diffusion coefficient:

activation energy/migration barrier : Emig

How can we obtain them ?

• Emig from DFT, from experimental results, ... tuning parameters adjusted on experimental data one this is possible. So we need the diffusion coefficient of the mono-vacancy, the divacancy, the tri-vacancy and so on

What can we obtain ?

A description of the microstructure in terms of positions of the objects in the volume and concentration

So we can model a desorption experiment for instance

For all the objects that can move, we need their diffusion coefficient:

activation energy/migration barrier : Emig

How can we obtain them ?

• Emig from DFT, from experimental results, ... tuning parameters adjusted on experimental data one this is possible. So we need the diffusion coefficient of the mono-vacancy, the divacancy, the tri-vacancy and so on

For all the objects that can emit:

a di-vacancy can emit a vacancy, a tri-vacancy containing 2 hydrogen atoms can emit either a vacancy or an hydrogen atom, a grain boundary can trap an intersitial or an hydrogen atom and re-emit it, etc...)

we need the **binding energy** of the emitted species with the object.

How can we obtain them ?

From **DFT** for small objects, from experimental results, ... tuning parameters adjusted on experimental data one this is possible

OKMC is a tool that can be used to « check » the data obtained from DFT. For instance if DFT predicts that H migration energy is XXX eV, we plug this value into OKMC and see whether H desorption takes place at the right temperature ...

I will come back to code comparaison at the end of this presentation

Multi-scale modeling validated by well controlled laboratory experiments

MACROSCOPIC RATE EQUATION (MRE) APPROACHES

Usual one

- developed to fit experimental data coming from polycrystal experimental studies
- Check parameters, ... without any link with physical processes
- Approach is an "engineer" one

MHIMS code

(Migration of Hydrogen Isotopes in MetalS)

New one

MRE

- Linked to the DFT approach
 - Used to integrated the DFT outcomes
- Up to now, fit single crystal experimental data

MHIMS-reservoir

MACROSCOPIC RATE EQUATION (MRE) APPROACHES

- developed to fit experimental data coming from polycrystal experimental studies
- Check parameters, ... without any link with physical processes
- Approach is an "engineer" one

MHIMS code

(Migration of Hydrogen Isotopes in MetalS)

New one

MRE

- Linked to the DFT approach
 - Used to integrated the DFT outcomes
- Up to now, fit single crystal experimental data

MHIMS-reservoir

USUAL MRE APPROACH

Energy diagram of HIs in tungsten (W)

- E_s = solubility activation energy
- E_D = Diffusion activation energy
- \succ E_{T,i} = E_{B,i} +E_D detrapping activation energy. Trap = vacancies, grain boundaries ...
- E_R = recombination activation energy

One trap of E_B trapping energy contents one H atom

USUAL MRE APPROACH

Energy diagram of HIs in tungsten (W)

Low concentration

- In stopping zone: high concentration, due to collisions
- Up to 1µm, relatively high concentration due plastic deformations, vacancies diffusion ,...

USUAL MRE: MODEL DESCRIPTION

MRE 1D modeling

$$\frac{\partial C_{t,i}}{\partial t} = -C_{t,i} \cdot v_i(T) + v_m(T) \cdot C_m \cdot \left(1 - \frac{C_{t,i}}{n_i}\right)$$
$$\frac{\partial C_m}{\partial t} = \mathbf{D}(T) \cdot \frac{\partial^2 C_m}{\partial x^2} - \sum \frac{\partial C_{t,i}}{\partial t} + S_{ext}$$

trapped particles

mobile particles

- *n_i*: trap density (intrinsic and created by incident ions)
- D(T): diffusion coefficient (m²/s)
- > $v_i(\mathbf{T})$: detrapping attempt frequency $v_0 = 10^{13} s^{-1}$
- ▶ $\boldsymbol{\nu}_{\boldsymbol{m}}(\mathbf{T})$: trapping attempt frequency. $\boldsymbol{\nu}_{\boldsymbol{m}} \propto D(T)$. n_i
- S_{ext} = particles source by implantation
 S_{ext} = (1 - r). φ. f(x)
 r: reflexion coefficient of HI on W, f(x): ions stopping range (both given by TRIM)
 φ: incident ion flux

USUAL MRE: MODEL DESCRIPTION

Boundary conditions

Desorption no limited by recombination:

$$C_m(x=0,L)=0$$

Experimental evidence of a desorption non limited by recombination [1, 2]

> [1] R. A. Causey, J. Nucl. Mater. (2002) [2] R. Bisson et al., J. Nucl. Mater. (2015)

USUAL MRE: MODEL DESCRIPTION

Boundary conditions

Desorption no limited by recombination:

$$C_m(x=0,L)=0$$

Experimental evidence of a desorption non limited by recombination [1, 2]

> [1] R. A. Causey, J. Nucl. Mater. (2002) [2] R. Bisson et al., J. Nucl. Mater. (2015)

TDS simulation in 3 phases

- > Implantation (initially empty): T_{imp} , E_{imp} , φ
- "resting" phase: T_{rest}, t_{rest}

 \triangleright

TDS phase: $T(t) = T_{rest} + \beta t$ β : heating ramp (K/s)

MHIMS Code (Migration of Hydrogen Isotopes in Metals)

"Macroscopic rate equation modeling of trapping/detrapping of hydrogen isotopes in tungsten materials", E Hodille et al, JNM, 2015, doi:10.1016/j.jnucmat.2015.06.041 32

Fit of experimental TDS data

- Input implantation and TDS parameters:
- $E_{imp} = 200 \text{ eV/D} (r = 0.56),$
- $\varphi = 2,5 \times 10^{19} \text{ D.m}^{-2}.\text{s}^{-1},$
- $T_{imp} = T_{rest} = 300 \text{ K},$
- *fluence* = 10²² D.m⁻²,
- $t_{rest} = 50 \, s,$
- $\beta = 8$ K/s.

Input trapping parameters with ν₀ = 10¹³ s⁻¹:
 > trap 1 (intrinsic): E_{T,1} = 0.87 eV (0,85), n₁ = 1×10⁻³
 > trap 2 (intrinsic): E_{T,2} = 1.00 eV, n₂ = 4×10⁻⁴
 > trap 3 (extrinsic): E_{T,3} = 1.5 eV (1.45) n_{3max} = 2x10⁻²
 Irradiation induced trap (∝ fluence)

O.V. Ogorodnikova et al., J. Nucl. Mater. (2003)

Retention versus fluence at 2 implantation temperatures

Effect of the duration of the "resting" phase on retention

45 % of initial inventory lost in ~ 80 h (confirmed by experimental observations) D twice deeper in the bulk TDS spectra peak apparently shifted to high temperature

Evolution of retention with the sample temperature during ions implantation

- MHIMS model fits well the experimental data (PCW)
- No information of the fundamental trapping processes (just an engineer approach)
- This MHIMS code is in a crosschecked process using a test case to be fitted (Eurofusion approach) with two other codes:
 - ✓ HIIPC from LSPM, Paris
 - ✓ Klaus Schmidt code, Garching

Good agreement observed

MACROSCOPIC RATE EQUATION (MRE) APPROACHES

- developed to fit experimental data coming from polycrystal experimental studies
- Check parameters, ... without any link with physical processes
- Approach is an "engineer" one

MHIMS code (Migration of Hydrogen Isotopes in MetalS)

MRE

- Linked to the DFT approach
 - Used to integrated the DFT outcomes
- Up to now, fit single crystal experimental data

MHIMS-reservoir

NEW APPROACH OF MACROSCOPIC RATE MODEL

MRE 1D modeling

$$\frac{\partial C_{t,i}}{\partial t} = -C_{t,i} \cdot v_i(T) + v_m(T) \cdot C_m \cdot \left(1 - \frac{C_{t,i}}{n_i}\right)$$

$$\frac{\partial C_m}{\partial t} = \mathbf{D}(T) \cdot \frac{\partial^2 C_m}{\partial x^2} - \sum \frac{\partial C_{t,i}}{\partial t} + S_{ext}$$
mobile particles

Input trapping parameters with $\nu_0 = 10^{13} \text{ s}^{-1}$:

>trap 1 (intrinsic): E_{T,1} = 0.87 eV (0,85), n₁ = 1×10⁻³>trap 2 (intrinsic): E_{T,2} = 1.00 eV, n₂ = 4×10⁻⁴>trap 3 (extrinsic): E_{T,3} = 1.5 eV (1.45) n3 = variable concentration

Each trap containing one HIs

Different from DFT outcomes From DFT, one vacancy can contain at RT up to 6 HIs

NEW APPROACH OF MACROSCOPIC RATE MODEL

Formalism

One single trap type (density N_t) can contain up to n HIs

- > *i-trap type,* $N_i = density of i-trap filled with <math>0 \le i \le n$ HIs, $N_t = \sum_{i=0}^n N_i$
- > $C_{t,i} = concentration of particle in i-trap trap = i \cdot N_i$

NEW APPROACH OF MACROSCOPIC RATE MODEL

Formalism

- One single trap type (density N_t) can contain up to n HIs
- > *i-trap type,* $N_i = density of i-trap filled with <math>0 \le i \le n$ HIs, $N_t = \sum_{i=0}^n N_i$
- > $C_{t,i} = concentration of particle in i-trap trap = i \cdot N_i$

Mechanisms & equations

- i-trap type can be change into:
- > *i+1-trap type by trapping a solute particle*
- > i-1-trap type by detrapping of a trapped particle from that trap

for
$$0 < i < n$$
, $\frac{\partial N_i}{\partial t} = -\nu_m \cdot C_m \cdot N_i + \nu_m \cdot C_m \cdot N_{i-1} - \nu_i \cdot N_i + \nu_{i+1} \cdot N_{i+1}$

And the mobile population is governed by :

$$\frac{\partial C_m}{\partial t} = D(T) \cdot \frac{\partial^2 C_m}{\partial x^2} + \sum_{i=1}^n \frac{\partial C_{t,i}}{\partial t} + S_{ext}$$

Code MHIMS-reservoir

"Study of a multi trapping macroscopic rate equation model for hydrogen isotopes in tungsten materials", E Hodille et al, accepted for publication, Physica Scripta, 2015

MACROSCOPIC RATE EQUATION: NEW APPROACH

Boundary condition

> Desorption no limited by recombination:

 $C_m(x=0,L)=0$

No Trap Creation

Trapping input

> Up to 6 atoms in a single vacancy at room temperature

TDS simulation in 3 phases

FIT OF EXPERIMENTAL DATA WITH MIHMS-RESERVOIR

Trapping in vacancy => <u>Single crystal tungsten (SCW)</u>

Few data

- Poon et al., JNM 2002:
 - fluence = 10^{21-22} D/m², flux = 10^{18} D/m²/s, 500 eV/D
 - Resting time ~ 8h 72h + backing at 400 K during 1h30 min
 - Heating ramp = 4-6 K/s
- Quastel et al, JNM 2006: (2)
 - fluence = 10^{23} D/m², flux = 10^{20} D/m²/s, 500 eV/D
 - well controlled resting time and backing
 - Heating ramp = 5,5 K/s
- Poon et al.: low flux and low fluence => trap creation neglected but baking step (sample at 400 K during 1h30 min before TDS and after the implantation)
- Quastel et al.: Well defined experimental conditions but high flux and fluence: trap creation (different from vacancies)?

FIT OF EXPERIMENTAL DATA WITH MIHMS-RESERVOIR: THE POON'S DATA

Parameters used in the simulation

FIT OF EXPERIMENTAL DATA WITH MIHMS-RESERVOIR: THE QUASTEL'S DATA

Parameters used in the simulation

fluence = 10^{23} D/m², flux = 10^{20} D/m²/s, 500 eV/D, heating ramp = 5,5 K/s Resting time = 0,42 h and no backing

THE MIMHS-RESERVOIR RESULTS

- MIHMS-reservoir able to fit TDS experimental data
- The detrapping energies obtained in agreement with DFT:

- Need of new experiment on very well characterized SCW samples
- Then, experiment with more complex crystal to discriminate between vacancies, Grain boundaries etc...: <u>target of the WHISCI project</u>

OKMC/MRE: MODELING THERMO-DESORPTION

Comparison between OKMC (LAKIMOCA) and MHIMS-reservoirs, based on DFT results

Conditions:`

- Sample of 300nm (1000W cells)
- Vacancies density: 2 10⁻⁶
- At RT, vacancies filled by 6 H
- T ramp up: 1K/s
- TDS starts immediately (no resting time):
 - 3 peaks observed
- TDS starts after 1000s at 300K:
 - Disappearance of low temperature band

OKMC/MRE: MODELING THERMO-DESORPTION

Comparison between OKMC (LAKIMOCA) and MHIMS-reservoirs, based on DFT results

Conditions:`

- Sample of 300nm (1000W cells)
- Vacancies density: 2 10⁻⁶
- At RT, vacancies filled by 6 H
- T ramp up: 1K/s
- TDS starts immediately (no resting time):
 - 3 peaks observed
- TDS starts after 1000s at 300K:
 - Disappearance of low temperature band

> DFT predicts in SC:

✤ H trapping energy, H migration energy, total concentration of vacancies,...

- > DFT predicts in SC:
 - ✤ H trapping energy, H migration energy, total concentration of vacancies,...
- > MHIMS Macroscopic Rate Equation Model:
 - ✤ Large number of parameters ☺
 - ✤ Some ad hoc hypothesis on the traps density ☺ but ok for low flux ☺
 - However,
 - ✓ good data fitting ☺
 - ✓ Good crosschecked with other macroscopic codes ☺
 - $\checkmark\,$ Valuable extrapolation for laboratory studies $\odot\,$
 - tokamak studies (role of impurity in the ion flux and on the surface properties) (3)

- > DFT predicts in SC:
 - ✤ H trapping energy, H migration energy, total concentration of vacancies,...
- > MHIMS Macroscopic Rate Equation Model:
- > MHIMS-reservoir Rate Equation Model:
 - ✤ Reduced number of parameters ☺
 - ✤ Strong links with basic physics (DFT) ☺
 - ✤ Good data fitting for SCW ☺ but small numbers of experiment ☺
 - ✤ Extrapolation to PCW? ☺ and to tokamak ☺
 - \checkmark The only way to proceed in order to address all the physical processes

- > DFT predicts in SC:
 - ✤ H trapping energy, H migration energy, total concentration of vacancies,...
- > MHIMS Macroscopic Rate Equation Model:
- > MHIMS-reservoir Rate Equation Model:
- Comparison of OKMC/MRE modeling: excellent agreement ③

- > DFT predicts in SC:
 - ✤ H trapping energy, H migration energy, total concentration of vacancies,...
- > MHIMS Macroscopic Rate Equation Model:
- > MHIMS-reservoir Rate Equation Model:
- Comparison of OKMC/MRE modeling: excellent agreement ③
- Future activities:
 - Improve data base of well characterized samples
 - On SCW and/or PCW
 - ◆ Well controlled surfaces + impurities effects
 - ◆ Well controlled implantation temperature and storage (down to 77K)
 - Neutrons simulation
 - ◆ Improving the MRE modeling
 - ✤ WEST application

This work has been carried out thanks to a partial support of the A*MIDEX project (n°ANR-11-IDEX-0001-02) funded by the "Investissements d'Avenir" French Government program, managed by the French National Research Agency (ANR)