

Hydrogen retention in self-damaged and He-irradiated tungsten and alloys for PFC

Sabina Markelj, Primož Pelicon, Iztok Čadež, Primož Vavpetič, Anže Založnik Jožef Stefan Institute, Association EURATOM-MESCS , Jamova 39, SI-1000 Ljubljana, Slovenia

Olga Ogorodnikova, Thomas Schwarz-Selinger Max-Planck-Institut für Plasmaphysik , EURATOM Association, Boltzmannstr. 2, D-85748 Garching, Germany

EFDA-coordinated project WP13-IPH-A03-P1-01/MESCS

CRP "PWI with Irradiated Tungsten...", Vienna, November 26-28, 2013

1.Introduction:

2 MV tandetron accelerator, Jožef Stefan Institute, Ljubljana, Slovenia

Two accelerator facility upgrades in 2012/2013:

- New multicusp proton ion source enabled duoplasmatron source to be permanently configured for He beam and available for prompt ³He NRA. ³He consumption optimized by construction of ³He/⁴He gas mixing setup.

Outline

- 1 Introduction: the accelerator laboratory at Jožef Stefan Institute
- 2. In situ setups for ERDA and NRA
- 3. In situ ERDA on undamaged and damaged tungsten
- 4. In situ NRA study on undamaged and damaged tungsten
- 5. Outlook for the RCP

Two accelerator facility upgrades in 2012/2013:

Two accelerator facility upgrades in 2012/2013:

- New multicusp proton ion source enabled duoplasmatron source to be permanently configured for He beam and available for prompt ³He NRA. ³He consumption optimized by construction of ³He/⁴He gas mixing setup.
- Broad beam NRA is set and it allows prompt static and in situ D-surface measurements and experiments.

³He beam formation for NRA: duoplasmatron ion source configured for He operation, positive extraction, Li exchange channel

³He gas consumption strongly reduced with construction of gas mixing set-up

2. In situ setups for ERDA and NRA In-situ ERDA

Experimental methods: Elastic Recoil Detection Analysis- ERDA Rutherford Backscattering - RBS

- Incoming beam: 4.3 MeV 7Li2+
- Beam dimensions: 2 x 1 mm²

ERDA in situ studies Markelj et al. JVST A 30, (2012) 041601-1 Markelj et al. Appl. Surf. Sci 282 (2013) 478

Hydrogen Atom Source (HABS): Typical central atom flux density at the sample was for H $1.6x10^{15}$ at.cm⁻²s⁻¹ and for D $1.06x10^{15}$ at.cm⁻²s⁻¹.

- NRA analysis at 5 different energies -1. 740,1500, 2500, 3300 and 4200 keV
- Takes about 1.5 h to go through the whole cycle, avoid too much current due to temperature increase.
- Time of studied processes hours/days.
- Background vacuum monitored by Quad Mass Analyzer- 1 to 100 m/q

The new set up for NRA measurements

The NRA method:

Analyzing protons from nuclear reaction D(³He,p)⁴He at ³He energies from 650 (500) keV up to 4.5 MeV

- D depth profile up to 8
- D-concentration in nea layer by D(³He,α)H read lowest ion beam energ analyzed α particles, de under a shallow scatte 102° (V.Kh. Alimov, M. I J. Roth, Nucl. Instr. and Phys. Res. B 234, (2005
- First measurements on sta C:D layer (60 nm) at five di energies (766, 1555, 2580,

Radiation damage by W implantation:

IPP, Garching

TEM for W (L. Ciupinski et al.): Damage up to 2.4 mm

Calculation of damage profile by SRIM is in good agreement with TEM observation – small vacancy clusters produced by heavy ion irradiation

O. Ogorodnikova, H workshop (2013)

Flat depth profile was created by implantation with different energies

20 MeV W⁶⁺ F=1.4x10¹⁸ W⁶⁺/m² (0.89 dpa) 8 MeV F=3.06x10¹⁷ W⁶⁺/m² 4 MeV F=1.97x10¹⁷ W⁶⁺/m² 2 MeV F=1.38x10¹⁷ W⁶⁺/m²

sta

Damaged W produced by 20 MeV W ion irradiation at IPP, Garching (0,89 dpa). Markelj et al, JNM 2013

In-situ at JSI: hydrogen atom beam source - HABS

In situ NRA measurements

K.G. Tschersich, J.P. Fleischhauer and H. Schuler, J. App Phys. 104, 034908 (2008);

- The atom flux density was determined by the erosion of the amorphoushydrogenated carbon (a-C:H) layer being exposed to hydrogen atoms at an elevated sample temperature [T. Schwarz-Selinger et al., J. Vac. Sci. Technol. A. 18 (2000) 995],
- a-C:H temperature: 573 K in this experiment.
- The erosion was quantified ex-situ by ellipsometry at IPP, Garching.

In-situ ERDA studies / undamaged W

Mirror polished polycrystalline tungsten samples, with large grains perpendicular to sample surface - Plansee ITER grade Markelj et al, Appl. Surf. Sci. 2013,

Time [s]

In-situ ERDA studies/isotope exchange

D fluence

[D m⁻²]

4.1 × 10²

4.5 × 10²¹

In situ/Ex situ NRA on damaged W @ 590 K

The depth profiles after the stop of atomic exposure measured in situ and ex situ are in a good agreement in damaged area (up to $2.4 \mu m$).

In situ NRA on undamaged W - ITER grade @ 500 K

First in situ measurement on undamaged W showed significantly higher retention, almost one order of magnitude higher, as compared to the ex situ measurement obtained on the same sample after 10 days. This indicated that D diffused out after stop of exposure, indicating on the so-called dynamic retention.

Probing NRA beam effect on the sample: significant!

No decrease of D concentration after end of D atom exposure at standard measuring position – indication that the probing beam influences on the D retention, creating traps. The D retention at position 2 mm above the standard analysing position (marked

DP) is much lower 9 days after exposure

termination - D atom fluences are similar.

Thermodesorption C:W:Al mixed layer

Sample C:W:AI + D₂ 1.5 µm thick layer on Si substrate Depth profile – TPD + NRA@2.5MeV – Depth profile

D starts to decrease @ 500 °C

> No typical desorption peak, only exponential increase.

In situ NRA on damaged W @ 700 K

Study on damaged W @ 700 K. The absorbed D reached the final damaging depth ≈2.5 µm much faster than in the case of 600 K. After further D exposure the D concentration only increased to the final saturation concentration, which is similar as in the case of ex situ studies at different set up.

Probing NRA beam effect on the

Atomic D flux at standard analyzing ³He position (4.5 ± 0.1)×10¹⁸ D/m²s. Different position 2 mm above (DP) flux $(4.34 \pm 0.05) \times 10^{18}$ D/m²s. Other ex situ study - flux 3.5×1019 D/m²s, perpendicular impact.

Thermodesorption C:W mixed layer

Sample C:W + D₂ 1.5 µm thick layer on Si substrate – sample #1, C. Lungu et al. Depth profile before - TPD - Depth profile after

Main desorption peak @ 700°C

- Single peak masses $2(H_2/D)$, 3(HD), $4(D_2)$ desorbing. D decreased but not completely W content \sim 8 at. %, Carbon \sim 92 at. % (mass ratio 1:1)

5. Outlook for the RCP

- The in situ measurements gave direct information about the dynamics of D migration through radiation-induced defects in W.
- Good agreement between the D depth profiles obtained in situ and ex situ on damaged W in the damaged zone was obtained. On the other hand, significant difference is observed between in situ and ex situ NRA measurements in the case of undamaged W.
- He beam implantation effect on D retention: simultaneous irradiation with high-energy (100-4500 keV) ⁴He beam and atomic D beam, followed by D NRA profiling:
 - looking for influence of He irradiation on the retention in damaged W, first experiments already done on undamaged tungsten.
- Study of bulk isotope exchange in damaged W under evaluation.
- Installation of ion gun with mass filter for in-situ irradiation with lowenergy ions.