Tungsten: most promising PFM in future fusion devices
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“ - e High melting point; high thermal conductivity;
Why low sputtering

Modeling and Simulation of Behaviors of Hydrogen,
Helium and their Synergy in Irradiated Tungsten

Extreme environment (3-fold irradiations)

e H/He plasma: low energy (0-100 eV), high flux (> 10?* m?2s1)
e High heat flux: 10 MW/m? - several hundred MW/m?

e Neutron : 14.2 MeV - radiation damage
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 Role e Withstand H/He/heat flux
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. Requirement = @ Structure integrity even at the high temperature

Defect formation, surface sputtering & erosion. blistering, cracking.
degradation of mechanical properties

H/He behaviors in irradiated W

Irradiation-induced defects

[ Neutrons. H/He Plasma. Heat loads } 3-fold irradiations * The interaction of H/He and defects induced by irradiation
coupled with intrinsic defects will be more complicated .

* How the H (and its isotopes) and He retention and blistering
varies in W with irradiated defects is a key concern after
deuterium-tritium reaction in the future fusion reactor.

e Itis clear that to understand this requires a comprehensive
knowledge from an atomic to a macroscopic point of view.

* Apart from the experiment, computer simulation at different
scales will play an indispensable role on this aspect especially
for simulation of the neutron irradiation.

Defect complex

Hydrogen/helium interaction with defects in tungsten

Mechanism for H bubble formation (nucleation)
in W (First-principles method)

Vacancy trapping mechanism for H bubble

Strain-triggered cascading growth of H bubble

HY

Critical H concentration for formation and rapid
growth of H bubble

Process of H bubble formation t> Suppression
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Such H segregation can saturate the internal vacancy
surface, leading to the formation of the H, molecule

and the preliminary nucleation of the H bubble.

[ e Enough space to provide an optimal charge density ]

Phys. Rev. B 79, 172103 (2009)




Suppressing H bubble via inert gas elements

Suppressing H bubble formation by inert gas

® Inert gas element (He/Ne/Ar) : closed shell electronic structure

Optimal charge isosurface for a single H

embedded at He-vacancy complex.

Atomic configuration of H at He-
vacancy complex.

Inert gas elements cause a redistribution of charge density inside the
vacancy to make it “not optimal” for the formation of H, molecule,
which can be treated as a preliminary nucleation of the H bubbles.

Nucl. Fusion 50, 115010 (2010)

Part IT

Strain-triggered cascading effect on H bubble
growth (First-principles method)

irradiation t

Process of H bubble formation

Suppression

of H bubble
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elements (Experiments)
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Effect of He on D retention
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Helium is the product of fusion reaction, and thus the H bubble may be
able to be suppressed by controlling the content of He in fusion process.

Dissolution of H in W under the isotropic strain
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Linear elasticity theory

The H solution energy is a linear monotonic
function of the triaxial strain.

Phys. Rev. Lett. 109, 135502 (2012); NIMB 269, 1731 (2011)

Strain-triggered cascading effect on H bubble growth
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The solution energy of H “effectively” decreases with the
increasing of both signs of anisotropic strain, due to the
movement of H forced by strain.

H accumulation = bubble formation=> Anisotropic strain in W
8%

< bubble growth < Enhancing H solubility

Phys. Rev. Lett. 109, 135502 (2012)

Growth of H/He bubble — molecular

Phys. Rev. Lett. 109, 135502 (2012)

W-H-He potentials for molecular dynamics
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Part 111 Critical H concentration for H bubble formation

Critical H concentration for formation and rapid First principles + Thermodynamics model:
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Critical H concentration for H bubble formation:

Comparison with experiments Hydrogen & helium in tungsten

10° 3 Fom\alioln and mpu'd.gromh ufrlt-\f ph 3 1
.§ 10" {:mica\m“ The predicted H critical * Intrinsic tungsten
£ , 1 n:;"““"“ 1| concentration for H  bubble
3 L]
E 10 - 1| formation in W is consistent with Vaca ncy
S 1 Not complex formaton experimental observations. * Grain boundary
@ 107 A 1
g 10 [ Black: No H bubble formation | a ] 1 * Surface
2 : Experiments :
-4} 1 0-0 A Experimental value _ . H
" b ] Peng, Lee and Ueda, J Nucl Mater ¢ He H Intera Ctlon
10 - - - . . .
500 600 700 800 900 l0op 438(2013) 51063 * Impurity & alloying elements

Temperature (K)

Predicted critical H concentration may serve as a criterion to
evaluate the H-induced failure of PFMs in further fusion reactor

Modeling and simulation of hydrogen behavior in tungsten at

Molecular
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Microscopic behavior
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Abstract:

stability &
bubble growth

Tungsten (W) is-considered to be one of the most promising plasma facing maserisls for

neat-atep fashon cocrigy sysiern. However, the retention snd b blisorsg of ydrogen
(H) isotopes in W remaim 10 be @ key issue tha needs fo be explored. Modeling md Experi ent

simultion are indispensable o understand the behavicr of H isotopes inchuding

dissolution, dffusion, sccumulation, and bliskering, which can contribut dicectly 1

=, peeparstion, and application af W as a plawma facing material under a fusion

Linear plasma
generator, lon
implantation

eavironment. This paper reviews the recent Mindings regasding the behavior of H in W

obtained via modeling and simulation at different scales.
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