

1st IAEA Research Coordination Meeting on Plasma-wall Interactions with Irradiated Tungsten and Tungsten Alloys in Fusion Devices Vienna, Austria, 25-27 November, 2013 **I** ILLINOIS

Fusion work in irradiated W at Illinois

Process-property-performance relationships studied in well-diagnosed *in-situ* experiments at Illinois and collaborators worldwide. Emphasis on nanoscale materials design and in-situ testing coupled to computational models

ILLINOIS

Severe plastic deformation leads to extreme refined grained tungsten

- Irradiations were performed on UFG (ultrafine-grained) and NC (nanocrystalline) samples prepared by large strain extrusion machining^{1,3}
- Coexisting of ultrafine (≤ 500nm)¹ and nanocrystalline (≤ 100 nm)² grains adjacent to each other permitted the observation of the behavior of both types of grains and their irradiation tolerance
- Current research focused on processing of full nanocrystalline W grain materials in collaboration with S. Chandrasekar (IE, Purdue)
- Samples size varied depending on characterization and irradiation experiments
- 3-mm UFG/NC W samples prepared to 300-nm thickness with FIB-SEM
- 5-mm samples prepared for high-flux irradiation plasmas (DIFFER collab with deTemmerman)

Snapshot of the Process Extrusion Machining available lathe

M. Efe et al. Scripta Materialia, 70 (2014) 31-34

Observing defect dynamics with in-situ TEM can elucidate effects: couple spatial scale with models

Irradiation was performed using the MIAMI facility with Dr Jonathan Hinks and Prof. Stephen Donnelly at the University of Huddersfield

4

HUDDERSFIELD

Outline

- · PMI/PFC research in irradiated W at Illinois
- Motivation for nanostructured W studies
- Processing of extreme refined-grain W
- In-situ TEM results of dynamic defect behavior in extreme refined-grain W
- High-flux irradiations in Pilot-PSI and Magnum-PSI at DIFFER
- Challenges to characterization and computational modeling of hydrogen isotope interactions in irradiated W
- Summary

I ILLINOIS

Nanostructuring of W by He irradiation

Irradiation of SPC NC-W with 200 eV He⁺ with moderate fluxes

Irradiation with helium (2X10¹⁶ ion.cm⁻² or 2x10²² ion.m⁻²) Helium energy = 200eV (no displacement damage) Temperature = 950 C (both thermal vacancy and interstitial migration are possible)

Nanostructuring of the shear band regions

O. El-Atwani et al. J. Nucl. Mater. 434 (2013) 170

In-situ TEM observation during 2-keV He+ irradiation at 950 C

Fluence from 2-2.4x10¹⁹ m⁻²

- Movement of loops occurs between pinning defects
- Irradiation enhanced diffusion (high defect concentration and enhanced mobility) needed for these defects to shuttle between pinning defects

ILLINOIS

Early and latter stages of damage observed with in-situ TEM

2 keV He+ ion irradiation of tungsten at 950°C

- (a) nanocrystalline (1) and ultrafine (2 and 3) grains before irradiation
- (b) at a fluence of 8×10¹⁸ ions.m⁻² and greater He bubble nucleation (bubbles indicated by vellow arrows)
- (c) after irradiation to a fluence of 2.4×10¹⁹ ions.m⁻² showing point defect cluster formation (indicated by red arrows) occurred preferentially in grains 2 and 3
- (d) after irradiation to a fluence of 3.2×10¹⁹ ions m⁻², a higher areal density of point defect clusters and small dislocation loops evident in grains 2 and 3 while grain 1 demonstrates a uniform distribution of bubbles and a significantly lower areal density of defect clusters and dislocation loops.

O. El-Atwani et al, To be submitted 2013

Summary of the in-situ TEM studies

- Grain boundaries are He sinks (large bubbles on the grain boundaries).
- Intra-granular bubble and defect formation in relatively large grains (e.g. > 60-nm)
- Grains of less than ~ 60-nm in size* yielded a 50% lower areal bubble density compared to larger grains (60-100 nm) and ultrafine grains (100-300 nm). Defect clusters were not observed on those grains.

Bubbles on grain boundaries were faceted (high He concentration)

ILLINOIS

O. El-Atwani et al, To be submitted 2013

size is a characteristic length defined by shortest distance between grain boundaries

Comparison with literature (fuzz formation)

Baldwin et al, JNM. 2010

SPD samples (UFG) have higher fuzz formation fluence thresholds, however fuzz thickness growth rate is faster

ILLINOIS

O. El-Atwani et al, in preparation 2013

SEM and TEM micrographs of the ultrafine grained tungsten sample irradiated with 30 eV He particles to a fluence of 1x10¹⁹ cm⁻² at 900 °C

In-situ TEM observation during 2-keV He+

No defect observed Only foun The larger higher the density ob interstitials NC tungst Dislocation and growt indication complexes (H. Iwakiri et

ILLING

adiation 100 nn supmitted 2013

Collaboration with FOM-DIFFER (Dutch Institute for Fundamental Energy Research)

Three lines of research: 1) high-flux irradiation (quiescent + transient) of nanostructured W and Mo, 2) Surface morphology and chemistry of nanostructured Low Z coatings on W and Mo, 3) temperature-dependent grain erosion studies of nano-structured W and Mo

Collaboration with G. De Temmerman, T. Morgan et al. 12

Nanostructure and morphology evolution on SPD-W

- Surface nanostructuring in multiple scales; evidence of He bubble emission at surface
- Crystallographic dependence of irradiation-driven surface patterning: implications for hydrogen isotope interactions

ILLINOIS

He clusters at grain boundaries of SPD tungsten: comparisons to atomistic modeling

Work by F. Sefta and B. Wirth et al. open up understanding of self-driven mechanisms for He cluster formation and role of grain boundaries

How do we couple impurity-driven surface structuring and defect evolution in irradiated materials? How do we close the gap in space and time between models and diagnosis? Irradiation-driven vs thermal-activated systems: instabilities and self-organization at the plasma-surface interface

Modification ion sources with in-situ tool set (4) PRIHSM SEM/PEEM column under development with E. Stach 2 broad beam ion Excitation sources t LEISS, DRS, XPD, XPS, UPS, ARPES sources with 0.1-4 mA/ cm², 30-1000 eV auto control on 2 degrees of freedom 2-D MCP/HESA detector/analyzer system dispersing energy and momentum 5-axis manipulator with e-beam evaporator and liquid N2 (77K-1200K), tilt for variation of incident angle

Conditions: GaSb(100) samples irradiated by Ar+ at 50, 100 and 200 eV, normal • incidence with 40-50 µAcm⁻² for fluences up to 10¹⁸ cm⁻¹

We operate in the sputter threshold regime and study early stage growth ILLINOIS^{e.g.} ~ 10¹⁵-10¹⁷ cm⁻²

J.P. Allain et al. To be submitted 2013

Summary

- Grain orientation and size have correlated effects on defect formation and surface nano-patterning and morphology evolution
- Defects dominated by high-density clusters within large grains (> 100-200 nm) and faceted He bubbles at grain boundaries in extremely refined-grained W
- In-situ TEM on commercial tungsten samples with micron-level grains and bubble . density comparison reveal the efficiency in trapping He atoms at grain boundaries in ultrafine-W and nano-crystalline W (NCW).
- Future work with dual-beam in-situ TEM experiments (He and W) on UFG W (also doped) to investigate hydrogen isotope retention and migration in damaged W
- Computational modeling of He-induced defects in W face serious challenges: multi-scale spatio-temporal defect dynamics that are intimately connected to their nano/ microstructure and driven far-from equilibrium in burning plasma fusion device environments
- Role of in-situ diagnosis of irradiated materials and how to close the spatio-temporal gap between measurements and modeling

Critical knowledge gap between "real" or "complex" systems and "isolated" systems in condensed matter

Indicates the need for complementary in-situ and in-vivo diagnosis to study coupling of irradiation-driven interface

ILLINOIS 1

Tokamak in-situ diagnosis of plasma-material interface: measurement of dynamic response

post-irradiation testing will not elucidate on dynamic effects

ILLINOIS

C.N. Taylor et al. Rev. Sci. Instrum. 83 (2012) 10D703.

