Plasma-beryllium interactions in ITER: research needs

G. De Temmerman^a,

With contributions from

M.J. Baldwin^b, D. Anthoine^a, K. Heinola^c, A. Jan^a, I. Jepu^d, J. Likonen^e, S. Lisgo^a C.P. Lungu^d, C. Porosnicu^d, and R.A. Pitts^a

^aITER Organization, Route de Vinon-sur-Verdon, CS 90046, 13067 St Paul Lez Durance, France
 ^bCentre for Energy Research, University of California at San Diego, San Diego, USA
 ^cUniversity of Helsinki, P.O. Box 64, 00560 Helsinki, Finland
 ^dNational Institute for Laser, Plasma and Radiation Physics, Bucharest-Magurele, Romania
 ^eVTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 VTT, Finland

ITER is the Nuclear Facility INB no. 174. This paper explores physics processes during the plasma operation of the tokamak; nevertheless the nuclear operator is not constrained by the results of this paper. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

Content

- Status of the ITER site and construction
- Srief reminder about ITER plasma-facing components
- Some key Be-related research questions
 - ♦ Be migration
 - ♦ T retention
 - Thermal outgassing
 - ♦ Dust

3 SZWRW9

Worksite progress

@2016, ITER Organization 3rd RCM of CRP on Beryllium, IAEA Headquarters, Vienna, June 2016 IDM UID: SZWRW9

Tokamak Gomera

Resting on 493 seismic pads, the reinforced concrete "B2" slab bears the 440 000-ton Tokamak Complex. Concrete casting of the B2 slab was finalized on August 27, 2014. Diagnostic Building (left) B1 level slab now complete; installation of interior walls and reinforcement for BioShield ongoing.

@2016, ITER Organization 3rd RCM of CRP on Beryllium, IAEA Headquarters, Vienna, June 2016 IDM UID: SZWRW9

5

Assembly Hall

Before being integrated in the machine, the components will be prepared and pre-assembled in this 6,000 m2, 60-metre high building. The Assembly Hall will be equipped with a double overhead travelling crane with a lifting capacity of 1,500 tons, whose installation is scheduled in June.

@2016, ITER Organization 3rd RCM of CRP on Beryllium, IAEA Headquarters, Vienna, June 2016

- Van Lie _ Sil

Assembly hall

@2016, ITER Organization 3rd RCM of CRP on Beryllium, IAEA Headquarters, Vienna, June 2016 IDM UID: SZWRW9

7

<u>Envopant</u>

@2016, ITER Organization 3rd RCM of CRP on Beryllium, IAEA Headquarters, Vienna, June 2016

MANA

ANA ARE ANA ANA ARAAAAAA

MANA

8 SZWRW9

IDM UID:

ITER plasma-facing materials

@2016, ITER Organization 3rd RCM of CRP on Beryllium, IAEA Headquarters, Vienna, June 2016

9

The plasma-wall interaction challenge

High particle fluences expected in ITER

Very high particle fluxes expected in ITER divertor ~10²⁴m⁻²s⁻¹

Limited number of experiments can reach those conditions

What is the influence of such high fluences on materials properties?

@2016, ITER Organization 3rd RCM of CRP on Beryllium, IAEA Headquarters, Vienna, June 2016

11

Full tungsten divertor

54 divertor assemblies (~9 tonnes each)

Bakeable to 350°C

Implementation of individual monoblock shaping under discussion

Monoblock toroidal chamfer \longrightarrow \longrightarrow \longrightarrow \longrightarrow Higher shoulder: 8 mmLower shoulder: 7.5 mm

Toroidal monoblock chamfer: 0.5 mm

Reminder: full-W divertor

ITER has a close-fitting and shaped first wall

Peaking in erosion pattern expected, magnitude being estimated

	@2016, ITER Organization	IDM UID:	
ina eu india japan korea russia usa	3rd RCM of CRP on Beryllium, IAEA Headquarters, Vienna, June 2016	SZWRW9	13

First wall erosion in ITER

Be erosion from plasma exposure during normal operations

- start-up on the high- and low-field sides
- main chamber charge-exchange neutral particle loads
- Close-fitting, shaped wall geometry- potential for co-deposition on first wall

First wall erosion in ITER

ITER WALL

Be erosion from plasma exposure during normal operations

- start-up on the high- and low-field sides
- main chamber charge-exchange neutral particle loads
- Close-fitting, shaped wall geometry- potential for co-deposition on first wall

Regions of particular interest include:

- the upper target area (quasi-double null operations)- BM8 and BM9
- BM11 and BM18 where plasma contact is though to be concentrated (interaction of 2nd separatrix with PFC)

iter china eu india japan korea russia usa

Migration modeling

Method: Use state-of-the-art codes linking predicted:

- plasma background solutions (SOLPS),
 - global impurity transport in the plasma (DIVIMP)
- PFC surface evolution due to erosion/redeposition (WALLDYN)
- Calculate the time evolution of the surface composition of PFCs
- Study sensitivity to different background plasmas
- Computational grids out to the walls but only 2D so far

Predicted co-deposition rates

iter china eu india japan korea russia usa

3rd RCM of CRP on Beryllium, IAEA Headquarters, Vienna, June 2016

SZWRW9¹⁷

T-retention in ITER and inventory limits

- T retention is limited by nuclear license: 1kg of in-vessel T
 - Minimize environmental release during accidents
- ♦ T-retention in ITER largely driven by co-deposition of T with Be
 - Estimated from WALLDYN for wide range of plasma scenarios

T-retention in ITER and inventory limits

T retention is limited by nuclear license: 1kg of in-vessel T

Minimize environmental release during accidents

♦ T-retention in ITER largely driven by co-deposition of T with Be

Estimated from WALLDYN for wide range of plasma scenarios

Be migration in ITER

- T-limit could be reached in 3000 20000 discharges (400s-long Q=10 discharges)
- NB: major uncertainty lies in the ITER SOL plasma parameters
 - Deposition occurs mainly in the divertor (baffle regions)

ter china eu india japan korea russia usa

Global tritium measurements

Closed T fuelling system for ITER:

- Calorimetry (T decay) used to monitor transfer from material subaccounts (sub-systems within T loop)
- PVT method to measure injection and exhaust
- Bakeout (240C FW, 350C divertor) for T recovery from PFM

No knowledge of where the tritium is trapped. Local measurements provide additional information and help constrain simulations

@2016, ITER Organization 3rd RCM of CRP on Beryllium, IAEA Headquarters, Vienna, June 2016 IDM UID: SZWRW9

20

Local tritium measurement (1/2)

Tritium and deposit monitor being designed for local measurements

- Laser-induced desorption for retention
- Lock-in thermography for co-deposit thickness

FOV of T/deposition monitor

Focus is on inner divertor baffle where most of the deposition is expected to occur

FOV~ 50x10cm

Desorbed species detected by RGA/QMS Can be used at the end of operation day

How to ensure full desorption from the co-deposit using laser heating?

Local tritium measurement (2/2)

- Experimental investigations of laser-induced desorption of D from Be
 - Be co-deposits: Yu et al
 - Bulk Be implanted with D: Keroack et al

In both cases, significant release only when close or above melting

J.H. Yu et al, JNM 438 (2013) D. Keroack et al., JNM 212-215 (1994)

Effect of longer pulse durations and multiple heating pulses?

T removal in ITER

 Outgassing by baking is the main technique for tritium removal from plasma-facing components

T removal in ITER

 Outgassing by baking is the main technique for tritium removal from plasma-facing components

♦ First wall baking at 240C

Hot water through cooling system

IDM UID:

SZWRW9

T removal in ITER

 Outgassing by baking is the main technique for tritium removal from plasma-facing components

♦ Divertor baking at 350C

- Hot gas circulated in cooling pipes
- Needs draining and drying of cooling lines
- Takes about 100hrs for draining/heating and then cooling
- Bake frequency/duration not specified yet.
 Under investigation

@2016, ITER Organization

IDM UID:

SZWRW9

Efficiency of T removal by baking

Previous investigations point out to possible reduced bake efficiency

- Effect of layer thickness, succession of bake cycles
- Recent results from JET beryllium co-deposits

How to extrapolate those results to ITER to assess T removal efficiency?

@2016, ITER Organization 3rd RCM of CRP on Beryllium, IAEA Headquarters, Vienna, June 2016 IDM UID: SZWRW9

26

Assessing efficiency of thermal outgassing

TMAP7 modeling: PISCES

TMAP7 developed at INEEL to simulate diffusion/trapping in materials

 Model developed by Baldwin et al fit a wide range of experimental PISCES data for Be co-deposits

TMAP7 model of PISCES data

Model extended to TDS data of JET codeposits (J. Likonen, PSI2016) Ramp and hold experiments: different ramp rates and hold time at 350C Diffusion coef. and recombination rates similar to Baldwin et al Assume a homogeneous D profile Trap energy and occupancy used as "free parameters"

M.J. Baldwin et al, Nucl. Fusion 54 (2014) 083032 M.J. Baldwin, R.P. Doerner, Nucl. Fusion 54 (2015)

Simulated data from 3 samples annealed under different conditions

Samples from tile 1 apron TMAP7 results 10K/min ramp rate 6x10¹⁸ 1000 15 hrs hold time at 350C **Desorbtion flux (m. s.** 5x10¹⁸ 4x10¹⁸ 3x10¹⁸ 2x10¹⁸ 1x10¹⁸ JET sample 800 **Temperature (C)** 400 **(C)** TMAP7 - Temperature 200 0 n 50000 60000 0 Time (s) 2b

iter china eu india japan korea russia usa

@2016, ITER Organization 3rd RCM of CRP on Beryllium, IAEA Headquarters, Vienna, June 2016 IDM UID: SZWRW9

Simulated data from 3 samples annealed under different conditions

Samples from tile 1 apron

TMAP7 results

Simulated data from 3 samples annealed under different conditions

TMAP7 results Samples from tile 1 3x10¹⁸ 10K/min ramp rate 1000 5 hrs hold time at 350C **Desorption flux (m⁻²s⁻¹)** 1x10¹⁸ JET sample 6 800 TMAP7 · Temperature ₂₀₀टि 0 0 5000 25000 0 10000 15000 20000 30000 Time (s) IDM UID: @2016, ITER Organization

iter china eu india japan korea russia usa

3rd RCM of CRP on Beryllium, IAEA Headquarters, Vienna, June 2016

Simulated data from 3 samples annealed under different conditions

See talk by J. Likonen

Good agreement obtained with 3 traps at 0.75-0.8; 1.1 and 1.4eV

- Relative occupancy of traps dependent on sample location (and probably conditions during plasma exposure)
- First two traps correspond well with those observed on PISCES codeposits (0.8 and 1eV)
- ♦ High energy trap appears in JET: effect of impurities?
- Data for thicker films would be benefitial
- Temperature history of tile also needed

Provides good basis for first extrapolation to ITER

Assessing efficiency of 350C bake

- TMAP simulations using 2 sets of assumptions
 - PISCES model with 1 trap (T_{dep}>100C)
 - JET co-deposit model (sample 12, 3 traps)

240C bake very inefficient. 350C more efficient At 350C, efficiency decreases very quickly with thickness

@2016, ITER Organization 3rd RCM of CRP on Beryllium, IAEA Headquarters, Vienna, June 2016 IDM UID: SZWRW9

Efficiency of LID (1/2)

Desorption efficiency decreases drastically with increasing thickness

For a 10µm film, only 25% D removed for a 1s pulse

Increasing temperature strongly increases desorption efficiency

Efficiency of LID (2/2)

- Different combinations of pulse number/pulse duration investigated
 - Total heating time kept constant

Final desorbed fraction only depends on the total heating time and is independent on the heating scenario (multiple pulses vs single pulse)

Need for improved diffusion/trapping data

- Diffusion/trapping modeling also used to assess efficiency of detritration from tokamak waste
 - Large uncertainties in existing diffusion/trapping/recombination rates
 D recombination rate on Be
 Diffusion coef. D in Be

Understanding the discrepancies between those values would ease extrapolations to ITER

@2016, ITER Organization 3rd RCM of CRP on Beryllium, IAEA Headquarters, Vienna, June 2016 IDM UID: SZWRW9 ³⁶

Be dust: what does it look like?

Very little (if any) existing data from relevant experiments...

- Dust from JET-ILW still to be analyzed, no delamination yet...
- Some data from QSPA (but remember: at higher plasma pressure)

Dust on QSPA exposed target

- Most probable dust size from existing experiments is <10 microns (but large size distribution)
- Early ITER operation phases will bring lots of information
- Important that sampling/analyses can be done during those phases

Summary/Outlook

- ♦ Good progress being made on beryllium erosion data
- Tritium retention estimates bound to uncertainties on SOL plasma
- Work ongoing to refine the T-removal strategy and develop local T measurement techniques
 - Important to obtain accurate data for T trapping, diffusion and recombination from bulk Be and Be co-deposits
- Information on Be dust from relevant experiments is needed to refine current assumptions

